示例#1
0
def _get_iwamoto_multiplier(Ybus, J, F, dV, dx, pvpq, pq, createJ, pvpq_lookup,
                            npv, npq, numba):
    """
    Calculates the iwamato multiplier to increase convergence
    """
    J_iwa = create_jacobian_matrix(Ybus, dV, pvpq, pq, createJ, pvpq_lookup,
                                   npv, npq, numba)
    J_dx = J * dx
    J_iwa_dx = 0.5 * dx * J_iwa * dx

    g0 = -F.dot(J_dx)
    g1 = J_dx.dot(J_dx) + 2 * F.dot(J_iwa_dx)
    g2 = -3.0 * J_dx.dot(J_iwa_dx)
    g3 = 2.0 * J_iwa_dx.dot(J_iwa_dx)

    np_roots = roots([g3, g2, g1, g0])[2].real
    return np_roots
示例#2
0
def newtonpf(Ybus, Sbus, V0, ref, pv, pq, ppci, options):
    """Solves the power flow using a full Newton's method.
    Solves for bus voltages given the full system admittance matrix (for
    all buses), the complex bus power injection vector (for all buses),
    the initial vector of complex bus voltages, and column vectors with
    the lists of bus indices for the swing bus, PV buses, and PQ buses,
    respectively. The bus voltage vector contains the set point for
    generator (including ref bus) buses, and the reference angle of the
    swing bus, as well as an initial guess for remaining magnitudes and
    angles.
    @see: L{runpf}
    @author: Ray Zimmerman (PSERC Cornell)
    @author: Richard Lincoln
    Modified by University of Kassel (Florian Schaefer) to use numba
    """

    # options
    tol = options['tolerance_mva']
    max_it = options["max_iteration"]
    numba = options["numba"]
    iwamoto = options["algorithm"] == "iwamoto_nr"
    voltage_depend_loads = options["voltage_depend_loads"]
    dist_slack = options["distributed_slack"]
    v_debug = options["v_debug"]
    use_umfpack = options["use_umfpack"]
    permc_spec = options["permc_spec"]

    baseMVA = ppci['baseMVA']
    bus = ppci['bus']
    gen = ppci['gen']
    slack_weights = bus[:, SL_FAC].astype(float64)  ## contribution factors for distributed slack

    # initialize
    i = 0
    V = V0
    Va = angle(V)
    Vm = abs(V)
    dVa, dVm = None, None
    if iwamoto:
        dVm, dVa = zeros_like(Vm), zeros_like(Va)

    if v_debug:
        Vm_it = Vm.copy()
        Va_it = Va.copy()
    else:
        Vm_it = None
        Va_it = None

    # set up indexing for updating V
    if dist_slack and len(ref) > 1:
        pv = r_[ref[1:], pv]
        ref = ref[[0]]

    pvpq = r_[pv, pq]
    # reference buses are always at the top, no matter where they are in the grid (very confusing...)
    # so in the refpvpq, the indices must be adjusted so that ref bus(es) starts with 0
    # todo: is it possible to simplify the indices/lookups and make the code clearer?
    # for columns: columns are in the normal order in Ybus; column numbers for J are reduced by 1 internally
    refpvpq = r_[ref, pvpq]
    # generate lookup pvpq -> index pvpq (used in createJ):
    #   shows for a given row from Ybus, which row in J it becomes
    #   e.g. the first row in J is a PV bus. If the first PV bus in Ybus is in the row 2, the index of the row in Jbus must be 0.
    #   pvpq_lookup will then have a 0 at the index 2
    pvpq_lookup = zeros(max(Ybus.indices) + 1, dtype=int)
    if dist_slack:
        # slack bus is relevant for the function createJ_ds
        pvpq_lookup[refpvpq] = arange(len(refpvpq))
    else:
        pvpq_lookup[pvpq] = arange(len(pvpq))

    # get jacobian function
    createJ = get_fastest_jacobian_function(pvpq, pq, numba, dist_slack)

    nref = len(ref)
    npv = len(pv)
    npq = len(pq)
    j1 = 0
    j2 = npv  # j1:j2 - V angle of pv buses
    j3 = j2
    j4 = j2 + npq  # j3:j4 - V angle of pq buses
    j5 = j4
    j6 = j4 + npq  # j5:j6 - V mag of pq buses
    j7 = j6
    j8 = j6 + nref # j7:j8 - slacks

    # make initial guess for the slack
    slack = (gen[:, PG].sum() - bus[:, PD].sum()) / baseMVA
    # evaluate F(x0)
    F = _evaluate_Fx(Ybus, V, Sbus, ref, pv, pq, slack_weights, dist_slack, slack)
    converged = _check_for_convergence(F, tol)

    Ybus = Ybus.tocsr()
    J = None

    # do Newton iterations
    while (not converged and i < max_it):
        # update iteration counter
        i = i + 1

        J = create_jacobian_matrix(Ybus, V, ref, refpvpq, pvpq, pq, createJ, pvpq_lookup, nref, npv, npq, numba, slack_weights, dist_slack)

        dx = -1 * spsolve(J, F, permc_spec=permc_spec, use_umfpack=use_umfpack)
        # update voltage
        if npv and not iwamoto:
            Va[pv] = Va[pv] + dx[j1:j2]
        if npq and not iwamoto:
            Va[pq] = Va[pq] + dx[j3:j4]
            Vm[pq] = Vm[pq] + dx[j5:j6]
        if dist_slack:
            slack = slack + dx[j7:j8]

        # iwamoto multiplier to increase convergence
        if iwamoto:
            Vm, Va = _iwamoto_step(Ybus, J, F, dx, pq, npv, npq, dVa, dVm, Vm, Va, pv, j1, j2, j3, j4, j5, j6)

        V = Vm * exp(1j * Va)
        Vm = abs(V)  # update Vm and Va again in case
        Va = angle(V)  # we wrapped around with a negative Vm

        if v_debug:
            Vm_it = column_stack((Vm_it, Vm))
            Va_it = column_stack((Va_it, Va))

        if voltage_depend_loads:
            Sbus = makeSbus(baseMVA, bus, gen, vm=Vm)

        F = _evaluate_Fx(Ybus, V, Sbus, ref, pv, pq, slack_weights, dist_slack, slack)

        converged = _check_for_convergence(F, tol)

    return V, converged, i, J, Vm_it, Va_it
示例#3
0
def newtonpf(Ybus, Sbus, V0, pv, pq, ppci, options):
    """Solves the power flow using a full Newton's method.

    Solves for bus voltages given the full system admittance matrix (for
    all buses), the complex bus power injection vector (for all buses),
    the initial vector of complex bus voltages, and column vectors with
    the lists of bus indices for the swing bus, PV buses, and PQ buses,
    respectively. The bus voltage vector contains the set point for
    generator (including ref bus) buses, and the reference angle of the
    swing bus, as well as an initial guess for remaining magnitudes and
    angles.

    @see: L{runpf}

    @author: Ray Zimmerman (PSERC Cornell)
    @author: Richard Lincoln

    Modified by University of Kassel (Florian Schaefer) to use numba
    """

    ## options
    tol = options['tolerance_kva'] * 1e-3
    max_it = options["max_iteration"]
    numba = options["numba"]
    iwamoto = options["algorithm"] == "iwamoto_nr"
    voltage_depend_loads = options["voltage_depend_loads"]
    v_debug = options["v_debug"]

    baseMVA = ppci['baseMVA']
    bus = ppci['bus']
    gen = ppci['gen']

    ## initialize
    i = 0
    V = V0
    Va = angle(V)
    Vm = abs(V)
    dVa, dVm = None, None
    if iwamoto:
        dVm, dVa = zeros_like(Vm), zeros_like(Va)

    if v_debug:
        Vm_it = Vm.copy()
        Va_it = Va.copy()
    else:
        Vm_it = None
        Va_it = None

    ## set up indexing for updating V
    pvpq = r_[pv, pq]
    # generate lookup pvpq -> index pvpq (used in createJ)
    pvpq_lookup = zeros(max(Ybus.indices) + 1, dtype=int)
    pvpq_lookup[pvpq] = arange(len(pvpq))

    # get jacobian function
    createJ = get_fastest_jacobian_function(pvpq, pq, numba)

    npv = len(pv)
    npq = len(pq)
    j1 = 0
    j2 = npv  ## j1:j2 - V angle of pv buses
    j3 = j2
    j4 = j2 + npq  ## j3:j4 - V angle of pq buses
    j5 = j4
    j6 = j4 + npq  ## j5:j6 - V mag of pq buses

    ## evaluate F(x0)
    F = _evaluate_Fx(Ybus, V, Sbus, pv, pq)
    converged = _check_for_convergence(F, tol)

    Ybus = Ybus.tocsr()
    J = None

    ## do Newton iterations
    while (not converged and i < max_it):
        ## update iteration counter
        i = i + 1

        J = create_jacobian_matrix(Ybus, V, pvpq, pq, createJ, pvpq_lookup,
                                   npv, npq, numba)

        dx = -1 * spsolve(J, F)
        ## update voltage
        if npv and not iwamoto:
            Va[pv] = Va[pv] + dx[j1:j2]
        if npq and not iwamoto:
            Va[pq] = Va[pq] + dx[j3:j4]
            Vm[pq] = Vm[pq] + dx[j5:j6]

        # iwamoto multiplier to increase convergence
        if iwamoto:
            Vm, Va = _iwamoto_step(Ybus, J, F, dx, pvpq, pq, createJ,
                                   pvpq_lookup, npv, npq, numba, dVa, dVm, Vm,
                                   Va, pv, j1, j2, j3, j4, j5, j6)

        V = Vm * exp(1j * Va)
        Vm = abs(V)  ## update Vm and Va again in case
        Va = angle(V)  ## we wrapped around with a negative Vm

        if v_debug:
            Vm_it = column_stack((Vm_it, Vm))
            Va_it = column_stack((Va_it, Va))

        if voltage_depend_loads:
            Sbus = makeSbus(baseMVA, bus, gen, vm=Vm)

        F = _evaluate_Fx(Ybus, V, Sbus, pv, pq)

        converged = _check_for_convergence(F, tol)

    return V, converged, i, J, Vm_it, Va_it
j1 = 0
j2 = npv  # j1:j2 - V angle of pv buses
j3 = j2
j4 = j2 + npq  # j3:j4 - V angle of pq buses
j5 = j4
j6 = j4 + npq  # j5:j6 - V mag of pq buses
createJ = get_fastest_jacobian_function(pvpq, pq, numba)

# mimic the code
F = solver._evaluate_Fx(Ybus, V, Sbus, pv, pq)
converged = solver._check_for_convergence(F, tol)
while (not converged and i < max_it):
    i = i + 1
    J = solver.create_jacobian_matrix(Ybus, V, pq, pvpq)
    # to test
    J2_ = create_jacobian_matrix(Ybus, V, pvpq, pq, createJ, pvpq_lookup, npv, npq, numba)
    J2 = sparse.csc_matrix(J2_)

    J_pp_ = np.load("J_{}.npy".format(i))
    J_pp = sparse.csc_matrix(J_pp_)

    test2 = np.where(J2.toarray() != 0)
    test = np.where(J.toarray() != 0)

    print("Are the non null values identical: ")
    print("\t for rows: {}".format(np.all(test[0] == test2[0])))
    print("\t for columns: {}".format(np.all(test[1] == test2[1])))


    comp_val = np.abs(J - J2)
    comp_val = comp_val.toarray()