def try_datetime(v): # safe coerce to datetime64 try: # GH19671 v = tslib.array_to_datetime(v, require_iso8601=True, errors='raise')[0] except ValueError: # we might have a sequence of the same-datetimes with tz's # if so coerce to a DatetimeIndex; if they are not the same, # then these stay as object dtype, xref GH19671 try: from pandas._libs.tslibs import conversion from pandas import DatetimeIndex values, tz = conversion.datetime_to_datetime64(v) return DatetimeIndex(values).tz_localize( 'UTC').tz_convert(tz=tz) except (ValueError, TypeError): pass except Exception: pass return v.reshape(shape)
def try_datetime(v): # safe coerce to datetime64 try: # GH19671 v = tslib.array_to_datetime(v, require_iso8601=True, errors="raise")[0] except ValueError: # we might have a sequence of the same-datetimes with tz's # if so coerce to a DatetimeIndex; if they are not the same, # then these stay as object dtype, xref GH19671 try: from pandas._libs.tslibs import conversion from pandas import DatetimeIndex values, tz = conversion.datetime_to_datetime64(v) return DatetimeIndex(values).tz_localize("UTC").tz_convert( tz=tz) except (ValueError, TypeError): pass except Exception: pass return v.reshape(shape)
def _to_datetime_with_format( arg, orig_arg, name, tz, fmt: str, exact: bool, errors: Optional[str], infer_datetime_format: bool, ) -> Optional[Index]: """ Try parsing with the given format, returning None on failure. """ result = None try: # shortcut formatting here if fmt == "%Y%m%d": # pass orig_arg as float-dtype may have been converted to # datetime64[ns] orig_arg = ensure_object(orig_arg) try: # may return None without raising result = _attempt_YYYYMMDD(orig_arg, errors=errors) except (ValueError, TypeError, OutOfBoundsDatetime) as err: raise ValueError( "cannot convert the input to '%Y%m%d' date format" ) from err if result is not None: utc = tz == "utc" return _box_as_indexlike(result, utc=utc, name=name) # fallback if result is None: # error: Incompatible types in assignment (expression has type # "Optional[Index]", variable has type "Optional[ndarray]") result = _array_strptime_with_fallback( # type: ignore[assignment] arg, name, tz, fmt, exact, errors, infer_datetime_format ) if result is not None: return result except ValueError as e: # Fallback to try to convert datetime objects if timezone-aware # datetime objects are found without passing `utc=True` try: values, tz = conversion.datetime_to_datetime64(arg) dta = DatetimeArray(values, dtype=tz_to_dtype(tz)) return DatetimeIndex._simple_new(dta, name=name) except (ValueError, TypeError): raise e # error: Incompatible return value type (got "Optional[ndarray]", expected # "Optional[Index]") return result # type: ignore[return-value]
def _to_datetime_with_format( arg, orig_arg, name, tz, fmt: str, exact: bool, errors: str, infer_datetime_format: bool, ) -> Index | None: """ Try parsing with the given format, returning None on failure. """ result = None try: # shortcut formatting here if fmt == "%Y%m%d": # pass orig_arg as float-dtype may have been converted to # datetime64[ns] orig_arg = ensure_object(orig_arg) try: # may return None without raising result = _attempt_YYYYMMDD(orig_arg, errors=errors) except (ValueError, TypeError, OutOfBoundsDatetime) as err: raise ValueError( "cannot convert the input to '%Y%m%d' date format" ) from err if result is not None: utc = tz == "utc" return _box_as_indexlike(result, utc=utc, name=name) # fallback res = _array_strptime_with_fallback( arg, name, tz, fmt, exact, errors, infer_datetime_format ) return res except ValueError as err: # Fallback to try to convert datetime objects if timezone-aware # datetime objects are found without passing `utc=True` try: values, tz = conversion.datetime_to_datetime64(arg) dta = DatetimeArray(values, dtype=tz_to_dtype(tz)) return DatetimeIndex._simple_new(dta, name=name) except (ValueError, TypeError): raise err
def _convert_listlike_datetimes( arg, box, format, name=None, tz=None, unit=None, errors=None, infer_datetime_format=None, dayfirst=None, yearfirst=None, exact=None, ): """ Helper function for to_datetime. Performs the conversions of 1D listlike of dates Parameters ---------- arg : list, tuple, ndarray, Series, Index date to be parced box : boolean True boxes result as an Index-like, False returns an ndarray name : object None or string for the Index name tz : object None or 'utc' unit : string None or string of the frequency of the passed data errors : string error handing behaviors from to_datetime, 'raise', 'coerce', 'ignore' infer_datetime_format : boolean inferring format behavior from to_datetime dayfirst : boolean dayfirst parsing behavior from to_datetime yearfirst : boolean yearfirst parsing behavior from to_datetime exact : boolean exact format matching behavior from to_datetime Returns ------- ndarray of parsed dates Returns: - Index-like if box=True - ndarray of Timestamps if box=False """ from pandas import DatetimeIndex from pandas.core.arrays import DatetimeArray from pandas.core.arrays.datetimes import ( maybe_convert_dtype, objects_to_datetime64ns, ) if isinstance(arg, (list, tuple)): arg = np.array(arg, dtype="O") # these are shortcutable if is_datetime64tz_dtype(arg): if not isinstance(arg, (DatetimeArray, DatetimeIndex)): return DatetimeIndex(arg, tz=tz, name=name) if tz == "utc": arg = arg.tz_convert(None).tz_localize(tz) return arg elif is_datetime64_ns_dtype(arg): if box and not isinstance(arg, (DatetimeArray, DatetimeIndex)): try: return DatetimeIndex(arg, tz=tz, name=name) except ValueError: pass return arg elif unit is not None: if format is not None: raise ValueError("cannot specify both format and unit") arg = getattr(arg, "values", arg) result, tz_parsed = tslib.array_with_unit_to_datetime(arg, unit, errors=errors) if box: if errors == "ignore": from pandas import Index result = Index(result, name=name) else: result = DatetimeIndex(result, name=name) # GH 23758: We may still need to localize the result with tz # GH 25546: Apply tz_parsed first (from arg), then tz (from caller) # result will be naive but in UTC try: result = result.tz_localize("UTC").tz_convert(tz_parsed) except AttributeError: # Regular Index from 'ignore' path return result if tz is not None: if result.tz is None: result = result.tz_localize(tz) else: result = result.tz_convert(tz) return result elif getattr(arg, "ndim", 1) > 1: raise TypeError( "arg must be a string, datetime, list, tuple, 1-d array, or Series" ) # warn if passing timedelta64, raise for PeriodDtype # NB: this must come after unit transformation orig_arg = arg arg, _ = maybe_convert_dtype(arg, copy=False) arg = ensure_object(arg) require_iso8601 = False if infer_datetime_format and format is None: format = _guess_datetime_format_for_array(arg, dayfirst=dayfirst) if format is not None: # There is a special fast-path for iso8601 formatted # datetime strings, so in those cases don't use the inferred # format because this path makes process slower in this # special case format_is_iso8601 = _format_is_iso(format) if format_is_iso8601: require_iso8601 = not infer_datetime_format format = None tz_parsed = None result = None if format is not None: try: # shortcut formatting here if format == "%Y%m%d": try: # pass orig_arg as float-dtype may have been converted to # datetime64[ns] orig_arg = ensure_object(orig_arg) result = _attempt_YYYYMMDD(orig_arg, errors=errors) except (ValueError, TypeError, tslibs.OutOfBoundsDatetime): raise ValueError( "cannot convert the input to '%Y%m%d' date format") # fallback if result is None: try: result, timezones = array_strptime(arg, format, exact=exact, errors=errors) if "%Z" in format or "%z" in format: return _return_parsed_timezone_results( result, timezones, box, tz, name) except tslibs.OutOfBoundsDatetime: if errors == "raise": raise elif errors == "coerce": result = np.empty(arg.shape, dtype="M8[ns]") iresult = result.view("i8") iresult.fill(tslibs.iNaT) else: result = arg except ValueError: # if format was inferred, try falling back # to array_to_datetime - terminate here # for specified formats if not infer_datetime_format: if errors == "raise": raise elif errors == "coerce": result = np.empty(arg.shape, dtype="M8[ns]") iresult = result.view("i8") iresult.fill(tslibs.iNaT) else: result = arg except ValueError as e: # Fallback to try to convert datetime objects if timezone-aware # datetime objects are found without passing `utc=True` try: values, tz = conversion.datetime_to_datetime64(arg) return DatetimeIndex._simple_new(values, name=name, tz=tz) except (ValueError, TypeError): raise e if result is None: assert format is None or infer_datetime_format utc = tz == "utc" result, tz_parsed = objects_to_datetime64ns( arg, dayfirst=dayfirst, yearfirst=yearfirst, utc=utc, errors=errors, require_iso8601=require_iso8601, allow_object=True, ) if tz_parsed is not None: if box: # We can take a shortcut since the datetime64 numpy array # is in UTC return DatetimeIndex._simple_new(result, name=name, tz=tz_parsed) else: # Convert the datetime64 numpy array to an numpy array # of datetime objects result = [ Timestamp(ts, tz=tz_parsed).to_pydatetime() for ts in result ] return np.array(result, dtype=object) if box: utc = tz == "utc" return _box_as_indexlike(result, utc=utc, name=name) return result
def _convert_listlike(arg, box, format, name=None, tz=tz): if isinstance(arg, (list, tuple)): arg = np.array(arg, dtype='O') # these are shortcutable if is_datetime64tz_dtype(arg): if not isinstance(arg, DatetimeIndex): return DatetimeIndex(arg, tz=tz, name=name) if utc: arg = arg.tz_convert(None).tz_localize('UTC') return arg elif is_datetime64_ns_dtype(arg): if box and not isinstance(arg, DatetimeIndex): try: return DatetimeIndex(arg, tz=tz, name=name) except ValueError: pass return arg elif unit is not None: if format is not None: raise ValueError("cannot specify both format and unit") arg = getattr(arg, 'values', arg) result = tslib.array_with_unit_to_datetime(arg, unit, errors=errors) if box: if errors == 'ignore': from pandas import Index return Index(result) return DatetimeIndex(result, tz=tz, name=name) return result elif getattr(arg, 'ndim', 1) > 1: raise TypeError('arg must be a string, datetime, list, tuple, ' '1-d array, or Series') arg = _ensure_object(arg) require_iso8601 = False if infer_datetime_format and format is None: format = _guess_datetime_format_for_array(arg, dayfirst=dayfirst) if format is not None: # There is a special fast-path for iso8601 formatted # datetime strings, so in those cases don't use the inferred # format because this path makes process slower in this # special case format_is_iso8601 = _format_is_iso(format) if format_is_iso8601: require_iso8601 = not infer_datetime_format format = None try: result = None if format is not None: # shortcut formatting here if format == '%Y%m%d': try: result = _attempt_YYYYMMDD(arg, errors=errors) except: raise ValueError("cannot convert the input to " "'%Y%m%d' date format") # fallback if result is None: try: result = array_strptime(arg, format, exact=exact, errors=errors) except tslib.OutOfBoundsDatetime: if errors == 'raise': raise result = arg except ValueError: # if format was inferred, try falling back # to array_to_datetime - terminate here # for specified formats if not infer_datetime_format: if errors == 'raise': raise result = arg if result is None and (format is None or infer_datetime_format): result = tslib.array_to_datetime( arg, errors=errors, utc=utc, dayfirst=dayfirst, yearfirst=yearfirst, require_iso8601=require_iso8601 ) if is_datetime64_dtype(result) and box: result = DatetimeIndex(result, tz=tz, name=name) return result except ValueError as e: try: values, tz = conversion.datetime_to_datetime64(arg) return DatetimeIndex._simple_new(values, name=name, tz=tz) except (ValueError, TypeError): raise e
def _convert_listlike_datetimes(arg, box, format, name=None, tz=None, unit=None, errors=None, infer_datetime_format=None, dayfirst=None, yearfirst=None, exact=None): """ Helper function for to_datetime. Performs the conversions of 1D listlike of dates Parameters ---------- arg : list, tuple, ndarray, Series, Index date to be parced box : boolean True boxes result as an Index-like, False returns an ndarray name : object None or string for the Index name tz : object None or 'utc' unit : string None or string of the frequency of the passed data errors : string error handing behaviors from to_datetime, 'raise', 'coerce', 'ignore' infer_datetime_format : boolean inferring format behavior from to_datetime dayfirst : boolean dayfirst parsing behavior from to_datetime yearfirst : boolean yearfirst parsing behavior from to_datetime exact : boolean exact format matching behavior from to_datetime Returns ------- ndarray of parsed dates Returns: - Index-like if box=True - ndarray of Timestamps if box=False """ from pandas import DatetimeIndex from pandas.core.arrays.datetimes import ( maybe_convert_dtype, objects_to_datetime64ns) if isinstance(arg, (list, tuple)): arg = np.array(arg, dtype='O') # these are shortcutable if is_datetime64tz_dtype(arg): if not isinstance(arg, DatetimeIndex): return DatetimeIndex(arg, tz=tz, name=name) if tz == 'utc': arg = arg.tz_convert(None).tz_localize(tz) return arg elif is_datetime64_ns_dtype(arg): if box and not isinstance(arg, DatetimeIndex): try: return DatetimeIndex(arg, tz=tz, name=name) except ValueError: pass return arg elif unit is not None: if format is not None: raise ValueError("cannot specify both format and unit") arg = getattr(arg, 'values', arg) result = tslib.array_with_unit_to_datetime(arg, unit, errors=errors) if box: if errors == 'ignore': from pandas import Index return Index(result, name=name) return DatetimeIndex(result, tz=tz, name=name) return result elif getattr(arg, 'ndim', 1) > 1: raise TypeError('arg must be a string, datetime, list, tuple, ' '1-d array, or Series') # warn if passing timedelta64, raise for PeriodDtype # NB: this must come after unit transformation orig_arg = arg arg, _ = maybe_convert_dtype(arg, copy=False) arg = ensure_object(arg) require_iso8601 = False if infer_datetime_format and format is None: format = _guess_datetime_format_for_array(arg, dayfirst=dayfirst) if format is not None: # There is a special fast-path for iso8601 formatted # datetime strings, so in those cases don't use the inferred # format because this path makes process slower in this # special case format_is_iso8601 = _format_is_iso(format) if format_is_iso8601: require_iso8601 = not infer_datetime_format format = None tz_parsed = None result = None if format is not None: try: # shortcut formatting here if format == '%Y%m%d': try: # pass orig_arg as float-dtype may have been converted to # datetime64[ns] orig_arg = ensure_object(orig_arg) result = _attempt_YYYYMMDD(orig_arg, errors=errors) except (ValueError, TypeError, tslibs.OutOfBoundsDatetime): raise ValueError("cannot convert the input to " "'%Y%m%d' date format") # fallback if result is None: try: result, timezones = array_strptime( arg, format, exact=exact, errors=errors) if '%Z' in format or '%z' in format: return _return_parsed_timezone_results( result, timezones, box, tz, name) except tslibs.OutOfBoundsDatetime: if errors == 'raise': raise result = arg except ValueError: # if format was inferred, try falling back # to array_to_datetime - terminate here # for specified formats if not infer_datetime_format: if errors == 'raise': raise result = arg except ValueError as e: # Fallback to try to convert datetime objects if timezone-aware # datetime objects are found without passing `utc=True` try: values, tz = conversion.datetime_to_datetime64(arg) return DatetimeIndex._simple_new(values, name=name, tz=tz) except (ValueError, TypeError): raise e if result is None: assert format is None or infer_datetime_format utc = tz == 'utc' result, tz_parsed = objects_to_datetime64ns( arg, dayfirst=dayfirst, yearfirst=yearfirst, utc=utc, errors=errors, require_iso8601=require_iso8601, allow_object=True) if tz_parsed is not None: if box: # We can take a shortcut since the datetime64 numpy array # is in UTC return DatetimeIndex._simple_new(result, name=name, tz=tz_parsed) else: # Convert the datetime64 numpy array to an numpy array # of datetime objects result = [Timestamp(ts, tz=tz_parsed).to_pydatetime() for ts in result] return np.array(result, dtype=object) if box: # Ensure we return an Index in all cases where box=True if is_datetime64_dtype(result): return DatetimeIndex(result, tz=tz, name=name) elif is_object_dtype(result): # e.g. an Index of datetime objects from pandas import Index return Index(result, name=name) return result
def _convert_listlike_datetimes(arg, box, format, name=None, tz=None, unit=None, errors=None, infer_datetime_format=None, dayfirst=None, yearfirst=None, exact=None): """ Helper function for to_datetime. Performs the conversions of 1D listlike of dates Parameters ---------- arg : list, tuple, ndarray, Series, Index date to be parced box : boolean True boxes result as an Index-like, False returns an ndarray name : object None or string for the Index name tz : object None or 'utc' unit : string None or string of the frequency of the passed data errors : string error handing behaviors from to_datetime, 'raise', 'coerce', 'ignore' infer_datetime_format : boolean inferring format behavior from to_datetime dayfirst : boolean dayfirst parsing behavior from to_datetime yearfirst : boolean yearfirst parsing behavior from to_datetime exact : boolean exact format matching behavior from to_datetime Returns ------- ndarray of parsed dates Returns: - Index-like if box=True - ndarray of Timestamps if box=False """ from pandas import DatetimeIndex from pandas.core.arrays.datetimes import maybe_convert_dtype if isinstance(arg, (list, tuple)): arg = np.array(arg, dtype='O') # these are shortcutable if is_datetime64tz_dtype(arg): if not isinstance(arg, DatetimeIndex): return DatetimeIndex(arg, tz=tz, name=name) if tz == 'utc': arg = arg.tz_convert(None).tz_localize(tz) return arg elif is_datetime64_ns_dtype(arg): if box and not isinstance(arg, DatetimeIndex): try: return DatetimeIndex(arg, tz=tz, name=name) except ValueError: pass return arg elif unit is not None: if format is not None: raise ValueError("cannot specify both format and unit") arg = getattr(arg, 'values', arg) result = tslib.array_with_unit_to_datetime(arg, unit, errors=errors) if box: if errors == 'ignore': from pandas import Index return Index(result, name=name) return DatetimeIndex(result, tz=tz, name=name) return result elif getattr(arg, 'ndim', 1) > 1: raise TypeError('arg must be a string, datetime, list, tuple, ' '1-d array, or Series') # warn if passing timedelta64, raise for PeriodDtype # NB: this must come after unit transformation orig_arg = arg arg, _ = maybe_convert_dtype(arg, copy=False) arg = ensure_object(arg) require_iso8601 = False if infer_datetime_format and format is None: format = _guess_datetime_format_for_array(arg, dayfirst=dayfirst) if format is not None: # There is a special fast-path for iso8601 formatted # datetime strings, so in those cases don't use the inferred # format because this path makes process slower in this # special case format_is_iso8601 = _format_is_iso(format) if format_is_iso8601: require_iso8601 = not infer_datetime_format format = None try: result = None if format is not None: # shortcut formatting here if format == '%Y%m%d': try: # pass orig_arg as float-dtype may have been converted to # datetime64[ns] orig_arg = ensure_object(orig_arg) result = _attempt_YYYYMMDD(orig_arg, errors=errors) except (ValueError, TypeError, tslibs.OutOfBoundsDatetime): raise ValueError("cannot convert the input to " "'%Y%m%d' date format") # fallback if result is None: try: result, timezones = array_strptime( arg, format, exact=exact, errors=errors) if '%Z' in format or '%z' in format: return _return_parsed_timezone_results( result, timezones, box, tz, name) except tslibs.OutOfBoundsDatetime: if errors == 'raise': raise result = arg except ValueError: # if format was inferred, try falling back # to array_to_datetime - terminate here # for specified formats if not infer_datetime_format: if errors == 'raise': raise result = arg if result is None and (format is None or infer_datetime_format): result, tz_parsed = tslib.array_to_datetime( arg, errors=errors, utc=tz == 'utc', dayfirst=dayfirst, yearfirst=yearfirst, require_iso8601=require_iso8601 ) if tz_parsed is not None: if box: # We can take a shortcut since the datetime64 numpy array # is in UTC return DatetimeIndex._simple_new(result, name=name, tz=tz_parsed) else: # Convert the datetime64 numpy array to an numpy array # of datetime objects result = [Timestamp(ts, tz=tz_parsed).to_pydatetime() for ts in result] return np.array(result, dtype=object) if box: # Ensure we return an Index in all cases where box=True if is_datetime64_dtype(result): return DatetimeIndex(result, tz=tz, name=name) elif is_object_dtype(result): # e.g. an Index of datetime objects from pandas import Index return Index(result, name=name) return result except ValueError as e: try: values, tz = conversion.datetime_to_datetime64(arg) return DatetimeIndex._simple_new(values, name=name, tz=tz) except (ValueError, TypeError): raise e
def _convert_listlike_datetimes(arg, box, format, name=None, tz=None, unit=None, errors=None, infer_datetime_format=None, dayfirst=None, yearfirst=None, exact=None): """ Helper function for to_datetime. Performs the conversions of 1D listlike of dates Parameters ---------- arg : list, tuple, ndarray, Series, Index date to be parced box : boolean True boxes result as an Index-like, False returns an ndarray name : object None or string for the Index name tz : object None or 'utc' unit : string None or string of the frequency of the passed data errors : string error handing behaviors from to_datetime, 'raise', 'coerce', 'ignore' infer_datetime_format : boolean inferring format behavior from to_datetime dayfirst : boolean dayfirst parsing behavior from to_datetime yearfirst : boolean yearfirst parsing behavior from to_datetime exact : boolean exact format matching behavior from to_datetime Returns ------- ndarray of parsed dates Returns: - Index-like if box=True - ndarray of Timestamps if box=False """ from pandas import DatetimeIndex if isinstance(arg, (list, tuple)): arg = np.array(arg, dtype='O') # these are shortcutable if is_datetime64tz_dtype(arg): if not isinstance(arg, DatetimeIndex): return DatetimeIndex(arg, tz=tz, name=name) if tz == 'utc': arg = arg.tz_convert(None).tz_localize(tz) return arg elif is_datetime64_ns_dtype(arg): if box and not isinstance(arg, DatetimeIndex): try: return DatetimeIndex(arg, tz=tz, name=name) except ValueError: pass return arg elif unit is not None: if format is not None: raise ValueError("cannot specify both format and unit") arg = getattr(arg, 'values', arg) result = tslib.array_with_unit_to_datetime(arg, unit, errors=errors) if box: if errors == 'ignore': from pandas import Index return Index(result) return DatetimeIndex(result, tz=tz, name=name) return result elif getattr(arg, 'ndim', 1) > 1: raise TypeError('arg must be a string, datetime, list, tuple, ' '1-d array, or Series') arg = _ensure_object(arg) require_iso8601 = False if infer_datetime_format and format is None: format = _guess_datetime_format_for_array(arg, dayfirst=dayfirst) if format is not None: # There is a special fast-path for iso8601 formatted # datetime strings, so in those cases don't use the inferred # format because this path makes process slower in this # special case format_is_iso8601 = _format_is_iso(format) if format_is_iso8601: require_iso8601 = not infer_datetime_format format = None try: result = None if format is not None: # shortcut formatting here if format == '%Y%m%d': try: result = _attempt_YYYYMMDD(arg, errors=errors) except: raise ValueError("cannot convert the input to " "'%Y%m%d' date format") # fallback if result is None: try: result, timezones = array_strptime( arg, format, exact=exact, errors=errors) if '%Z' in format or '%z' in format: return _return_parsed_timezone_results( result, timezones, box, tz) except tslibs.OutOfBoundsDatetime: if errors == 'raise': raise result = arg except ValueError: # if format was inferred, try falling back # to array_to_datetime - terminate here # for specified formats if not infer_datetime_format: if errors == 'raise': raise result = arg if result is None and (format is None or infer_datetime_format): result = tslib.array_to_datetime( arg, errors=errors, utc=tz == 'utc', dayfirst=dayfirst, yearfirst=yearfirst, require_iso8601=require_iso8601 ) if is_datetime64_dtype(result) and box: result = DatetimeIndex(result, tz=tz, name=name) return result except ValueError as e: try: values, tz = conversion.datetime_to_datetime64(arg) return DatetimeIndex._simple_new(values, name=name, tz=tz) except (ValueError, TypeError): raise e
def _convert_listlike_datetimes( arg, format: Optional[str], name: Hashable = None, tz: Optional[Timezone] = None, unit: Optional[str] = None, errors: Optional[str] = None, infer_datetime_format: bool = False, dayfirst: Optional[bool] = None, yearfirst: Optional[bool] = None, exact: bool = True, ): """ Helper function for to_datetime. Performs the conversions of 1D listlike of dates Parameters ---------- arg : list, tuple, ndarray, Series, Index date to be parsed name : object None or string for the Index name tz : object None or 'utc' unit : string None or string of the frequency of the passed data errors : string error handing behaviors from to_datetime, 'raise', 'coerce', 'ignore' infer_datetime_format : bool, default False inferring format behavior from to_datetime dayfirst : boolean dayfirst parsing behavior from to_datetime yearfirst : boolean yearfirst parsing behavior from to_datetime exact : bool, default True exact format matching behavior from to_datetime Returns ------- Index-like of parsed dates """ if isinstance(arg, (list, tuple)): arg = np.array(arg, dtype="O") arg_dtype = getattr(arg, "dtype", None) # these are shortcutable if is_datetime64tz_dtype(arg_dtype): if not isinstance(arg, (DatetimeArray, DatetimeIndex)): return DatetimeIndex(arg, tz=tz, name=name) if tz == "utc": arg = arg.tz_convert(None).tz_localize(tz) return arg elif is_datetime64_ns_dtype(arg_dtype): if not isinstance(arg, (DatetimeArray, DatetimeIndex)): try: return DatetimeIndex(arg, tz=tz, name=name) except ValueError: pass elif tz: # DatetimeArray, DatetimeIndex return arg.tz_localize(tz) return arg elif unit is not None: if format is not None: raise ValueError("cannot specify both format and unit") arg = getattr(arg, "_values", arg) # GH 30050 pass an ndarray to tslib.array_with_unit_to_datetime # because it expects an ndarray argument if isinstance(arg, IntegerArray): result = arg.astype(f"datetime64[{unit}]") tz_parsed = None else: result, tz_parsed = tslib.array_with_unit_to_datetime( arg, unit, errors=errors) if errors == "ignore": result = Index(result, name=name) else: result = DatetimeIndex(result, name=name) # GH 23758: We may still need to localize the result with tz # GH 25546: Apply tz_parsed first (from arg), then tz (from caller) # result will be naive but in UTC try: result = result.tz_localize("UTC").tz_convert(tz_parsed) except AttributeError: # Regular Index from 'ignore' path return result if tz is not None: if result.tz is None: result = result.tz_localize(tz) else: result = result.tz_convert(tz) return result elif getattr(arg, "ndim", 1) > 1: raise TypeError( "arg must be a string, datetime, list, tuple, 1-d array, or Series" ) # warn if passing timedelta64, raise for PeriodDtype # NB: this must come after unit transformation orig_arg = arg try: arg, _ = maybe_convert_dtype(arg, copy=False) except TypeError: if errors == "coerce": result = np.array(["NaT"], dtype="datetime64[ns]").repeat(len(arg)) return DatetimeIndex(result, name=name) elif errors == "ignore": result = Index(arg, name=name) return result raise arg = ensure_object(arg) require_iso8601 = False if infer_datetime_format and format is None: format = _guess_datetime_format_for_array(arg, dayfirst=dayfirst) if format is not None: # There is a special fast-path for iso8601 formatted # datetime strings, so in those cases don't use the inferred # format because this path makes process slower in this # special case format_is_iso8601 = format_is_iso(format) if format_is_iso8601: require_iso8601 = not infer_datetime_format format = None result = None if format is not None: try: # shortcut formatting here if format == "%Y%m%d": # pass orig_arg as float-dtype may have been converted to # datetime64[ns] orig_arg = ensure_object(orig_arg) try: result = _attempt_YYYYMMDD(orig_arg, errors=errors) except (ValueError, TypeError, OutOfBoundsDatetime) as err: raise ValueError( "cannot convert the input to '%Y%m%d' date format" ) from err # fallback if result is None: result = _array_strptime_with_fallback(arg, name, tz, format, exact, errors, infer_datetime_format) if result is not None: return result except ValueError as e: # Fallback to try to convert datetime objects if timezone-aware # datetime objects are found without passing `utc=True` try: values, tz = conversion.datetime_to_datetime64(arg) dta = DatetimeArray(values, dtype=tz_to_dtype(tz)) return DatetimeIndex._simple_new(dta, name=name) except (ValueError, TypeError): raise e if result is None: assert format is None or infer_datetime_format utc = tz == "utc" result, tz_parsed = objects_to_datetime64ns( arg, dayfirst=dayfirst, yearfirst=yearfirst, utc=utc, errors=errors, require_iso8601=require_iso8601, allow_object=True, ) if tz_parsed is not None: # We can take a shortcut since the datetime64 numpy array # is in UTC dta = DatetimeArray(result, dtype=tz_to_dtype(tz_parsed)) return DatetimeIndex._simple_new(dta, name=name) utc = tz == "utc" return _box_as_indexlike(result, utc=utc, name=name)