def _compare_local_to_utc(tz_didx, utc_didx): def f(x): return conversion.tz_convert_single(x, tz_didx.tz, UTC) result = conversion.tz_convert(utc_didx.asi8, tz_didx.tz, UTC) expected = np.vectorize(f)(utc_didx.asi8) tm.assert_numpy_array_equal(result, expected)
def _local_timestamps(self): """ Convert to an i8 (unix-like nanosecond timestamp) representation while keeping the local timezone and not using UTC. This is used to calculate time-of-day information as if the timestamps were timezone-naive. """ return conversion.tz_convert(self.asi8, utc, self.tz)
def test_tslib_tz_convert(self): def compare_utc_to_local(tz_didx, utc_didx): f = lambda x: conversion.tz_convert_single(x, 'UTC', tz_didx.tz) result = conversion.tz_convert(tz_didx.asi8, 'UTC', tz_didx.tz) result_single = np.vectorize(f)(tz_didx.asi8) tm.assert_numpy_array_equal(result, result_single) def compare_local_to_utc(tz_didx, utc_didx): f = lambda x: conversion.tz_convert_single(x, tz_didx.tz, 'UTC') result = conversion.tz_convert(utc_didx.asi8, tz_didx.tz, 'UTC') result_single = np.vectorize(f)(utc_didx.asi8) tm.assert_numpy_array_equal(result, result_single) for tz in ['UTC', 'Asia/Tokyo', 'US/Eastern', 'Europe/Moscow']: # US: 2014-03-09 - 2014-11-11 # MOSCOW: 2014-10-26 / 2014-12-31 tz_didx = date_range('2014-03-01', '2015-01-10', freq='H', tz=tz) utc_didx = date_range('2014-03-01', '2015-01-10', freq='H') compare_utc_to_local(tz_didx, utc_didx) # local tz to UTC can be differ in hourly (or higher) freqs because # of DST compare_local_to_utc(tz_didx, utc_didx) tz_didx = date_range('2000-01-01', '2020-01-01', freq='D', tz=tz) utc_didx = date_range('2000-01-01', '2020-01-01', freq='D') compare_utc_to_local(tz_didx, utc_didx) compare_local_to_utc(tz_didx, utc_didx) tz_didx = date_range('2000-01-01', '2100-01-01', freq='A', tz=tz) utc_didx = date_range('2000-01-01', '2100-01-01', freq='A') compare_utc_to_local(tz_didx, utc_didx) compare_local_to_utc(tz_didx, utc_didx) # Check empty array result = conversion.tz_convert(np.array([], dtype=np.int64), timezones.maybe_get_tz('US/Eastern'), timezones.maybe_get_tz('Asia/Tokyo')) tm.assert_numpy_array_equal(result, np.array([], dtype=np.int64)) # Check all-NaT array result = conversion.tz_convert(np.array([tslib.iNaT], dtype=np.int64), timezones.maybe_get_tz('US/Eastern'), timezones.maybe_get_tz('Asia/Tokyo')) tm.assert_numpy_array_equal(result, np.array( [tslib.iNaT], dtype=np.int64))
def test_tslib_tz_convert(self): def compare_utc_to_local(tz_didx, utc_didx): f = lambda x: conversion.tz_convert_single(x, 'UTC', tz_didx.tz) result = conversion.tz_convert(tz_didx.asi8, 'UTC', tz_didx.tz) result_single = np.vectorize(f)(tz_didx.asi8) tm.assert_numpy_array_equal(result, result_single) def compare_local_to_utc(tz_didx, utc_didx): f = lambda x: conversion.tz_convert_single(x, tz_didx.tz, 'UTC') result = conversion.tz_convert(utc_didx.asi8, tz_didx.tz, 'UTC') result_single = np.vectorize(f)(utc_didx.asi8) tm.assert_numpy_array_equal(result, result_single) for tz in ['UTC', 'Asia/Tokyo', 'US/Eastern', 'Europe/Moscow']: # US: 2014-03-09 - 2014-11-11 # MOSCOW: 2014-10-26 / 2014-12-31 tz_didx = date_range('2014-03-01', '2015-01-10', freq='H', tz=tz) utc_didx = date_range('2014-03-01', '2015-01-10', freq='H') compare_utc_to_local(tz_didx, utc_didx) # local tz to UTC can be differ in hourly (or higher) freqs because # of DST compare_local_to_utc(tz_didx, utc_didx) tz_didx = date_range('2000-01-01', '2020-01-01', freq='D', tz=tz) utc_didx = date_range('2000-01-01', '2020-01-01', freq='D') compare_utc_to_local(tz_didx, utc_didx) compare_local_to_utc(tz_didx, utc_didx) tz_didx = date_range('2000-01-01', '2100-01-01', freq='A', tz=tz) utc_didx = date_range('2000-01-01', '2100-01-01', freq='A') compare_utc_to_local(tz_didx, utc_didx) compare_local_to_utc(tz_didx, utc_didx) # Check empty array result = conversion.tz_convert(np.array([], dtype=np.int64), timezones.maybe_get_tz('US/Eastern'), timezones.maybe_get_tz('Asia/Tokyo')) tm.assert_numpy_array_equal(result, np.array([], dtype=np.int64)) # Check all-NaT array result = conversion.tz_convert(np.array([tslib.iNaT], dtype=np.int64), timezones.maybe_get_tz('US/Eastern'), timezones.maybe_get_tz('Asia/Tokyo')) tm.assert_numpy_array_equal(result, np.array([tslib.iNaT], dtype=np.int64))
def _local_timestamps(self): """ Convert to an i8 (unix-like nanosecond timestamp) representation while keeping the local timezone and not using UTC. This is used to calculate time-of-day information as if the timestamps were timezone-naive. """ values = self.asi8 indexer = values.argsort() result = conversion.tz_convert(values.take(indexer), utc, self.tz) n = len(indexer) reverse = np.empty(n, dtype=np.int_) reverse.put(indexer, np.arange(n)) return result.take(reverse)
def __init__(self, index, warn=True): self.index = index self.values = index.asi8 # This moves the values, which are implicitly in UTC, to the # the timezone so they are in local time if hasattr(index, 'tz'): if index.tz is not None: self.values = tz_convert(self.values, UTC, index.tz) self.warn = warn if len(index) < 3: raise ValueError('Need at least 3 dates to infer frequency') self.is_monotonic = (self.index._is_monotonic_increasing or self.index._is_monotonic_decreasing)
def tz_localize(self, tz, ambiguous='raise', errors='raise'): """ Localize tz-naive Datetime Array/Index to tz-aware Datetime Array/Index. This method takes a time zone (tz) naive Datetime Array/Index object and makes this time zone aware. It does not move the time to another time zone. Time zone localization helps to switch from time zone aware to time zone unaware objects. Parameters ---------- tz : string, pytz.timezone, dateutil.tz.tzfile or None Time zone to convert timestamps to. Passing ``None`` will remove the time zone information preserving local time. ambiguous : str {'infer', 'NaT', 'raise'} or bool array, default 'raise' - 'infer' will attempt to infer fall dst-transition hours based on order - bool-ndarray where True signifies a DST time, False signifies a non-DST time (note that this flag is only applicable for ambiguous times) - 'NaT' will return NaT where there are ambiguous times - 'raise' will raise an AmbiguousTimeError if there are ambiguous times errors : {'raise', 'coerce'}, default 'raise' - 'raise' will raise a NonExistentTimeError if a timestamp is not valid in the specified time zone (e.g. due to a transition from or to DST time) - 'coerce' will return NaT if the timestamp can not be converted to the specified time zone .. versionadded:: 0.19.0 Returns ------- result : same type as self Array/Index converted to the specified time zone. Raises ------ TypeError If the Datetime Array/Index is tz-aware and tz is not None. See Also -------- DatetimeIndex.tz_convert : Convert tz-aware DatetimeIndex from one time zone to another. Examples -------- >>> tz_naive = pd.date_range('2018-03-01 09:00', periods=3) >>> tz_naive DatetimeIndex(['2018-03-01 09:00:00', '2018-03-02 09:00:00', '2018-03-03 09:00:00'], dtype='datetime64[ns]', freq='D') Localize DatetimeIndex in US/Eastern time zone: >>> tz_aware = tz_naive.tz_localize(tz='US/Eastern') >>> tz_aware DatetimeIndex(['2018-03-01 09:00:00-05:00', '2018-03-02 09:00:00-05:00', '2018-03-03 09:00:00-05:00'], dtype='datetime64[ns, US/Eastern]', freq='D') With the ``tz=None``, we can remove the time zone information while keeping the local time (not converted to UTC): >>> tz_aware.tz_localize(None) DatetimeIndex(['2018-03-01 09:00:00', '2018-03-02 09:00:00', '2018-03-03 09:00:00'], dtype='datetime64[ns]', freq='D') """ if self.tz is not None: if tz is None: new_dates = conversion.tz_convert(self.asi8, 'UTC', self.tz) else: raise TypeError("Already tz-aware, use tz_convert to convert.") else: tz = timezones.maybe_get_tz(tz) # Convert to UTC new_dates = conversion.tz_localize_to_utc(self.asi8, tz, ambiguous=ambiguous, errors=errors) new_dates = new_dates.view(_NS_DTYPE) return self._shallow_copy(new_dates, tz=tz)
def test_tz_convert_corner(arr): result = conversion.tz_convert(arr, timezones.maybe_get_tz("US/Eastern"), timezones.maybe_get_tz("Asia/Tokyo")) tm.assert_numpy_array_equal(result, arr)
def test_tz_convert_corner(self, arr): result = conversion.tz_convert(arr, timezones.maybe_get_tz('US/Eastern'), timezones.maybe_get_tz('Asia/Tokyo')) tm.assert_numpy_array_equal(result, arr)
def compare_local_to_utc(tz_didx, utc_didx): f = lambda x: conversion.tz_convert_single(x, tz_didx.tz, 'UTC') result = conversion.tz_convert(utc_didx.asi8, tz_didx.tz, 'UTC') result_single = np.vectorize(f)(utc_didx.asi8) tm.assert_numpy_array_equal(result, result_single)