示例#1
0
def sequence_to_td64ns(data,
                       copy=False,
                       unit=None,
                       errors="raise") -> Tuple[np.ndarray, Optional[Tick]]:
    """
    Parameters
    ----------
    data : list-like
    copy : bool, default False
    unit : str, optional
        The timedelta unit to treat integers as multiples of. For numeric
        data this defaults to ``'ns'``.
        Must be un-specified if the data contains a str and ``errors=="raise"``.
    errors : {"raise", "coerce", "ignore"}, default "raise"
        How to handle elements that cannot be converted to timedelta64[ns].
        See ``pandas.to_timedelta`` for details.

    Returns
    -------
    converted : numpy.ndarray
        The sequence converted to a numpy array with dtype ``timedelta64[ns]``.
    inferred_freq : Tick or None
        The inferred frequency of the sequence.

    Raises
    ------
    ValueError : Data cannot be converted to timedelta64[ns].

    Notes
    -----
    Unlike `pandas.to_timedelta`, if setting ``errors=ignore`` will not cause
    errors to be ignored; they are caught and subsequently ignored at a
    higher level.
    """
    inferred_freq = None
    if unit is not None:
        unit = parse_timedelta_unit(unit)

    # Unwrap whatever we have into a np.ndarray
    if not hasattr(data, "dtype"):
        # e.g. list, tuple
        if np.ndim(data) == 0:
            # i.e. generator
            data = list(data)
        data = np.array(data, copy=False)
    elif isinstance(data, ABCSeries):
        data = data._values
    elif isinstance(data, ABCTimedeltaIndex):
        inferred_freq = data.freq
        data = data._data._ndarray
    elif isinstance(data, TimedeltaArray):
        inferred_freq = data.freq
        data = data._ndarray
    elif isinstance(data, IntegerArray):
        data = data.to_numpy("int64", na_value=tslibs.iNaT)
    elif is_categorical_dtype(data.dtype):
        data = data.categories.take(data.codes, fill_value=NaT)._values
        copy = False

    # Convert whatever we have into timedelta64[ns] dtype
    if is_object_dtype(data.dtype) or is_string_dtype(data.dtype):
        # no need to make a copy, need to convert if string-dtyped
        data = objects_to_td64ns(data, unit=unit, errors=errors)
        copy = False

    elif is_integer_dtype(data.dtype):
        # treat as multiples of the given unit
        data, copy_made = ints_to_td64ns(data, unit=unit)
        copy = copy and not copy_made

    elif is_float_dtype(data.dtype):
        # cast the unit, multiply base/frac separately
        # to avoid precision issues from float -> int
        mask = np.isnan(data)
        m, p = precision_from_unit(unit or "ns")
        base = data.astype(np.int64)
        frac = data - base
        if p:
            frac = np.round(frac, p)
        data = (base * m + (frac * m).astype(np.int64)).view("timedelta64[ns]")
        data[mask] = iNaT
        copy = False

    elif is_timedelta64_dtype(data.dtype):
        if data.dtype != TD64NS_DTYPE:
            # non-nano unit
            data = ensure_timedelta64ns(data)
            copy = False

    else:
        # This includes datetime64-dtype, see GH#23539, GH#29794
        raise TypeError(
            f"dtype {data.dtype} cannot be converted to timedelta64[ns]")

    data = np.array(data, copy=copy)

    assert data.dtype == "m8[ns]", data
    return data, inferred_freq
示例#2
0
def sequence_to_td64ns(data, copy=False, unit="ns", errors="raise"):
    """
    Parameters
    ----------
    array : list-like
    copy : bool, default False
    unit : str, default "ns"
        The timedelta unit to treat integers as multiples of.
    errors : {"raise", "coerce", "ignore"}, default "raise"
        How to handle elements that cannot be converted to timedelta64[ns].
        See ``pandas.to_timedelta`` for details.

    Returns
    -------
    converted : numpy.ndarray
        The sequence converted to a numpy array with dtype ``timedelta64[ns]``.
    inferred_freq : Tick or None
        The inferred frequency of the sequence.

    Raises
    ------
    ValueError : Data cannot be converted to timedelta64[ns].

    Notes
    -----
    Unlike `pandas.to_timedelta`, if setting ``errors=ignore`` will not cause
    errors to be ignored; they are caught and subsequently ignored at a
    higher level.
    """
    inferred_freq = None
    unit = parse_timedelta_unit(unit)

    # Unwrap whatever we have into a np.ndarray
    if not hasattr(data, "dtype"):
        # e.g. list, tuple
        if np.ndim(data) == 0:
            # i.e. generator
            data = list(data)
        data = np.array(data, copy=False)
    elif isinstance(data, ABCSeries):
        data = data._values
    elif isinstance(data, (ABCTimedeltaIndex, TimedeltaArray)):
        inferred_freq = data.freq
        data = data._data

    # Convert whatever we have into timedelta64[ns] dtype
    if is_object_dtype(data.dtype) or is_string_dtype(data.dtype):
        # no need to make a copy, need to convert if string-dtyped
        data = objects_to_td64ns(data, unit=unit, errors=errors)
        copy = False

    elif is_integer_dtype(data.dtype):
        # treat as multiples of the given unit
        data, copy_made = ints_to_td64ns(data, unit=unit)
        copy = copy and not copy_made

    elif is_float_dtype(data.dtype):
        # cast the unit, multiply base/frace separately
        # to avoid precision issues from float -> int
        mask = np.isnan(data)
        m, p = precision_from_unit(unit)
        base = data.astype(np.int64)
        frac = data - base
        if p:
            frac = np.round(frac, p)
        data = (base * m + (frac * m).astype(np.int64)).view("timedelta64[ns]")
        data[mask] = iNaT
        copy = False

    elif is_timedelta64_dtype(data.dtype):
        if data.dtype != _TD_DTYPE:
            # non-nano unit
            # TODO: watch out for overflows
            data = data.astype(_TD_DTYPE)
            copy = False

    else:
        # This includes datetime64-dtype, see GH#23539, GH#29794
        raise TypeError(
            f"dtype {data.dtype} cannot be converted to timedelta64[ns]")

    data = np.array(data, copy=copy)

    assert data.dtype == "m8[ns]", data
    return data, inferred_freq
示例#3
0
def to_timedelta(arg, unit=None, errors="raise"):
    """
    Convert argument to timedelta.

    Timedeltas are absolute differences in times, expressed in difference
    units (e.g. days, hours, minutes, seconds). This method converts
    an argument from a recognized timedelta format / value into
    a Timedelta type.

    Parameters
    ----------
    arg : str, timedelta, list-like or Series
        The data to be converted to timedelta.

        .. deprecated:: 1.2
            Strings with units 'M', 'Y' and 'y' do not represent
            unambiguous timedelta values and will be removed in a future version

    unit : str, optional
        Denotes the unit of the arg for numeric `arg`. Defaults to ``"ns"``.

        Possible values:

        * 'W'
        * 'D' / 'days' / 'day'
        * 'hours' / 'hour' / 'hr' / 'h'
        * 'm' / 'minute' / 'min' / 'minutes' / 'T'
        * 'S' / 'seconds' / 'sec' / 'second'
        * 'ms' / 'milliseconds' / 'millisecond' / 'milli' / 'millis' / 'L'
        * 'us' / 'microseconds' / 'microsecond' / 'micro' / 'micros' / 'U'
        * 'ns' / 'nanoseconds' / 'nano' / 'nanos' / 'nanosecond' / 'N'

        .. versionchanged:: 1.1.0

           Must not be specified when `arg` context strings and
           ``errors="raise"``.

    errors : {'ignore', 'raise', 'coerce'}, default 'raise'
        - If 'raise', then invalid parsing will raise an exception.
        - If 'coerce', then invalid parsing will be set as NaT.
        - If 'ignore', then invalid parsing will return the input.

    Returns
    -------
    timedelta64 or numpy.array of timedelta64
        Output type returned if parsing succeeded.

    See Also
    --------
    DataFrame.astype : Cast argument to a specified dtype.
    to_datetime : Convert argument to datetime.
    convert_dtypes : Convert dtypes.

    Notes
    -----
    If the precision is higher than nanoseconds, the precision of the duration is
    truncated to nanoseconds for string inputs.

    Examples
    --------
    Parsing a single string to a Timedelta:

    >>> pd.to_timedelta('1 days 06:05:01.00003')
    Timedelta('1 days 06:05:01.000030')
    >>> pd.to_timedelta('15.5us')
    Timedelta('0 days 00:00:00.000015500')

    Parsing a list or array of strings:

    >>> pd.to_timedelta(['1 days 06:05:01.00003', '15.5us', 'nan'])
    TimedeltaIndex(['1 days 06:05:01.000030', '0 days 00:00:00.000015500', NaT],
                   dtype='timedelta64[ns]', freq=None)

    Converting numbers by specifying the `unit` keyword argument:

    >>> pd.to_timedelta(np.arange(5), unit='s')
    TimedeltaIndex(['0 days 00:00:00', '0 days 00:00:01', '0 days 00:00:02',
                    '0 days 00:00:03', '0 days 00:00:04'],
                   dtype='timedelta64[ns]', freq=None)
    >>> pd.to_timedelta(np.arange(5), unit='d')
    TimedeltaIndex(['0 days', '1 days', '2 days', '3 days', '4 days'],
                   dtype='timedelta64[ns]', freq=None)
    """
    if unit is not None:
        unit = parse_timedelta_unit(unit)

    if errors not in ("ignore", "raise", "coerce"):
        raise ValueError(
            "errors must be one of 'ignore', 'raise', or 'coerce'.")

    if unit in {"Y", "y", "M"}:
        raise ValueError(
            "Units 'M', 'Y', and 'y' are no longer supported, as they do not "
            "represent unambiguous timedelta values durations.")

    if arg is None:
        return arg
    elif isinstance(arg, ABCSeries):
        values = _convert_listlike(arg._values, unit=unit, errors=errors)
        return arg._constructor(values, index=arg.index, name=arg.name)
    elif isinstance(arg, ABCIndex):
        return _convert_listlike(arg, unit=unit, errors=errors, name=arg.name)
    elif isinstance(arg, np.ndarray) and arg.ndim == 0:
        # extract array scalar and process below
        arg = lib.item_from_zerodim(arg)
    elif is_list_like(arg) and getattr(arg, "ndim", 1) == 1:
        return _convert_listlike(arg, unit=unit, errors=errors)
    elif getattr(arg, "ndim", 1) > 1:
        raise TypeError(
            "arg must be a string, timedelta, list, tuple, 1-d array, or Series"
        )

    if isinstance(arg, str) and unit is not None:
        raise ValueError(
            "unit must not be specified if the input is/contains a str")

    # ...so it must be a scalar value. Return scalar.
    return _coerce_scalar_to_timedelta_type(arg, unit=unit, errors=errors)
示例#4
0
def sequence_to_td64ns(data, copy=False, unit="ns", errors="raise"):
    """
    Parameters
    ----------
    array : list-like
    copy : bool, default False
    unit : str, default "ns"
        The timedelta unit to treat integers as multiples of.
    errors : {"raise", "coerce", "ignore"}, default "raise"
        How to handle elements that cannot be converted to timedelta64[ns].
        See ``pandas.to_timedelta`` for details.

    Returns
    -------
    converted : numpy.ndarray
        The sequence converted to a numpy array with dtype ``timedelta64[ns]``.
    inferred_freq : Tick or None
        The inferred frequency of the sequence.

    Raises
    ------
    ValueError : Data cannot be converted to timedelta64[ns].

    Notes
    -----
    Unlike `pandas.to_timedelta`, if setting ``errors=ignore`` will not cause
    errors to be ignored; they are caught and subsequently ignored at a
    higher level.
    """
    inferred_freq = None
    unit = parse_timedelta_unit(unit)

    # Unwrap whatever we have into a np.ndarray
    if not hasattr(data, 'dtype'):
        # e.g. list, tuple
        if np.ndim(data) == 0:
            # i.e. generator
            data = list(data)
        data = np.array(data, copy=False)
    elif isinstance(data, ABCSeries):
        data = data._values
    elif isinstance(data, (ABCTimedeltaIndex, TimedeltaArray)):
        inferred_freq = data.freq
        data = data._data

    # Convert whatever we have into timedelta64[ns] dtype
    if is_object_dtype(data.dtype) or is_string_dtype(data.dtype):
        # no need to make a copy, need to convert if string-dtyped
        data = objects_to_td64ns(data, unit=unit, errors=errors)
        copy = False

    elif is_integer_dtype(data.dtype):
        # treat as multiples of the given unit
        data, copy_made = ints_to_td64ns(data, unit=unit)
        copy = copy and not copy_made

    elif is_float_dtype(data.dtype):
        # cast the unit, multiply base/frace separately
        # to avoid precision issues from float -> int
        mask = np.isnan(data)
        m, p = precision_from_unit(unit)
        base = data.astype(np.int64)
        frac = data - base
        if p:
            frac = np.round(frac, p)
        data = (base * m + (frac * m).astype(np.int64)).view('timedelta64[ns]')
        data[mask] = iNaT
        copy = False

    elif is_timedelta64_dtype(data.dtype):
        if data.dtype != _TD_DTYPE:
            # non-nano unit
            # TODO: watch out for overflows
            data = data.astype(_TD_DTYPE)
            copy = False

    elif is_datetime64_dtype(data):
        # GH#23539
        warnings.warn("Passing datetime64-dtype data to TimedeltaIndex is "
                      "deprecated, will raise a TypeError in a future "
                      "version",
                      FutureWarning, stacklevel=4)
        data = ensure_int64(data).view(_TD_DTYPE)

    else:
        raise TypeError("dtype {dtype} cannot be converted to timedelta64[ns]"
                        .format(dtype=data.dtype))

    data = np.array(data, copy=copy)
    if data.ndim != 1:
        raise ValueError("Only 1-dimensional input arrays are supported.")

    assert data.dtype == 'm8[ns]', data
    return data, inferred_freq
示例#5
0
def to_timedelta(arg, unit="ns", errors="raise"):
    """
    Convert argument to timedelta.

    Timedeltas are absolute differences in times, expressed in difference
    units (e.g. days, hours, minutes, seconds). This method converts
    an argument from a recognized timedelta format / value into
    a Timedelta type.

    Parameters
    ----------
    arg : str, timedelta, list-like or Series
        The data to be converted to timedelta.
    unit : str, default 'ns'
        Denotes the unit of the arg. Possible values:
        ('Y', 'M', 'W', 'D', 'days', 'day', 'hours', hour', 'hr',
        'h', 'm', 'minute', 'min', 'minutes', 'T', 'S', 'seconds',
        'sec', 'second', 'ms', 'milliseconds', 'millisecond',
        'milli', 'millis', 'L', 'us', 'microseconds', 'microsecond',
        'micro', 'micros', 'U', 'ns', 'nanoseconds', 'nano', 'nanos',
        'nanosecond', 'N').

    errors : {'ignore', 'raise', 'coerce'}, default 'raise'
        - If 'raise', then invalid parsing will raise an exception.
        - If 'coerce', then invalid parsing will be set as NaT.
        - If 'ignore', then invalid parsing will return the input.

    Returns
    -------
    timedelta64 or numpy.array of timedelta64
        Output type returned if parsing succeeded.

    See Also
    --------
    DataFrame.astype : Cast argument to a specified dtype.
    to_datetime : Convert argument to datetime.
    convert_dtypes : Convert dtypes.

    Examples
    --------

    Parsing a single string to a Timedelta:

    >>> pd.to_timedelta('1 days 06:05:01.00003')
    Timedelta('1 days 06:05:01.000030')
    >>> pd.to_timedelta('15.5us')
    Timedelta('0 days 00:00:00.000015')

    Parsing a list or array of strings:

    >>> pd.to_timedelta(['1 days 06:05:01.00003', '15.5us', 'nan'])
    TimedeltaIndex(['1 days 06:05:01.000030', '0 days 00:00:00.000015', NaT],
                   dtype='timedelta64[ns]', freq=None)

    Converting numbers by specifying the `unit` keyword argument:

    >>> pd.to_timedelta(np.arange(5), unit='s')
    TimedeltaIndex(['00:00:00', '00:00:01', '00:00:02',
                    '00:00:03', '00:00:04'],
                   dtype='timedelta64[ns]', freq=None)
    >>> pd.to_timedelta(np.arange(5), unit='d')
    TimedeltaIndex(['0 days', '1 days', '2 days', '3 days', '4 days'],
                   dtype='timedelta64[ns]', freq=None)
    """
    unit = parse_timedelta_unit(unit)

    if errors not in ("ignore", "raise", "coerce"):
        raise ValueError(
            "errors must be one of 'ignore', 'raise', or 'coerce'}")

    if unit in {"Y", "y", "M"}:
        raise ValueError(
            "Units 'M' and 'Y' are no longer supported, as they do not "
            "represent unambiguous timedelta values durations.")

    if arg is None:
        return arg
    elif isinstance(arg, ABCSeries):
        values = _convert_listlike(arg._values, unit=unit, errors=errors)
        return arg._constructor(values, index=arg.index, name=arg.name)
    elif isinstance(arg, ABCIndexClass):
        return _convert_listlike(arg, unit=unit, errors=errors, name=arg.name)
    elif isinstance(arg, np.ndarray) and arg.ndim == 0:
        # extract array scalar and process below
        arg = arg.item()
    elif is_list_like(arg) and getattr(arg, "ndim", 1) == 1:
        return _convert_listlike(arg, unit=unit, errors=errors)
    elif getattr(arg, "ndim", 1) > 1:
        raise TypeError(
            "arg must be a string, timedelta, list, tuple, 1-d array, or Series"
        )

    # ...so it must be a scalar value. Return scalar.
    return _coerce_scalar_to_timedelta_type(arg, unit=unit, errors=errors)
示例#6
0
def sequence_to_td64ns(data, copy=False, unit="ns", errors="raise"):
    """
    Parameters
    ----------
    array : list-like
    copy : bool, default False
    unit : str, default "ns"
        The timedelta unit to treat integers as multiples of.
    errors : {"raise", "coerce", "ignore"}, default "raise"
        How to handle elements that cannot be converted to timedelta64[ns].
        See ``pandas.to_timedelta`` for details.

    Returns
    -------
    converted : numpy.ndarray
        The sequence converted to a numpy array with dtype ``timedelta64[ns]``.
    inferred_freq : Tick or None
        The inferred frequency of the sequence.

    Raises
    ------
    ValueError : Data cannot be converted to timedelta64[ns].

    Notes
    -----
    Unlike `pandas.to_timedelta`, if setting ``errors=ignore`` will not cause
    errors to be ignored; they are caught and subsequently ignored at a
    higher level.
    """
    inferred_freq = None
    unit = parse_timedelta_unit(unit)

    # Unwrap whatever we have into a np.ndarray
    if not hasattr(data, 'dtype'):
        # e.g. list, tuple
        if np.ndim(data) == 0:
            # i.e. generator
            data = list(data)
        data = np.array(data, copy=False)
    elif isinstance(data, ABCSeries):
        data = data._values
    elif isinstance(data, (ABCTimedeltaIndex, TimedeltaArray)):
        inferred_freq = data.freq
        data = data._data

    # Convert whatever we have into timedelta64[ns] dtype
    if is_object_dtype(data.dtype) or is_string_dtype(data.dtype):
        # no need to make a copy, need to convert if string-dtyped
        data = objects_to_td64ns(data, unit=unit, errors=errors)
        copy = False

    elif is_integer_dtype(data.dtype):
        # treat as multiples of the given unit
        data, copy_made = ints_to_td64ns(data, unit=unit)
        copy = copy and not copy_made

    elif is_float_dtype(data.dtype):
        # treat as multiples of the given unit.  If after converting to nanos,
        #  there are fractional components left, these are truncated
        #  (i.e. NOT rounded)
        mask = np.isnan(data)
        coeff = np.timedelta64(1, unit) / np.timedelta64(1, 'ns')
        data = (coeff * data).astype(np.int64).view('timedelta64[ns]')
        data[mask] = iNaT
        copy = False

    elif is_timedelta64_dtype(data.dtype):
        if data.dtype != _TD_DTYPE:
            # non-nano unit
            # TODO: watch out for overflows
            data = data.astype(_TD_DTYPE)
            copy = False

    elif is_datetime64_dtype(data):
        # GH#23539
        warnings.warn(
            "Passing datetime64-dtype data to TimedeltaIndex is "
            "deprecated, will raise a TypeError in a future "
            "version",
            FutureWarning,
            stacklevel=4)
        data = ensure_int64(data).view(_TD_DTYPE)

    else:
        raise TypeError(
            "dtype {dtype} cannot be converted to timedelta64[ns]".format(
                dtype=data.dtype))

    data = np.array(data, copy=copy)
    assert data.dtype == 'm8[ns]', data
    return data, inferred_freq
示例#7
0
def to_timedelta(arg, unit="ns", box=True, errors="raise"):
    """
    Convert argument to timedelta.

    Timedeltas are absolute differences in times, expressed in difference
    units (e.g. days, hours, minutes, seconds). This method converts
    an argument from a recognized timedelta format / value into
    a Timedelta type.

    Parameters
    ----------
    arg : str, timedelta, list-like or Series
        The data to be converted to timedelta.
    unit : str, default 'ns'
        Denotes the unit of the arg. Possible values:
        ('Y', 'M', 'W', 'D', 'days', 'day', 'hours', hour', 'hr',
        'h', 'm', 'minute', 'min', 'minutes', 'T', 'S', 'seconds',
        'sec', 'second', 'ms', 'milliseconds', 'millisecond',
        'milli', 'millis', 'L', 'us', 'microseconds', 'microsecond',
        'micro', 'micros', 'U', 'ns', 'nanoseconds', 'nano', 'nanos',
        'nanosecond', 'N').
    box : bool, default True
        - If True returns a Timedelta/TimedeltaIndex of the results.
        - If False returns a numpy.timedelta64 or numpy.darray of
          values of dtype timedelta64[ns].

        .. deprecated:: 0.25.0
            Use :meth:`Series.to_numpy` or :meth:`Timedelta.to_timedelta64`
            instead to get an ndarray of values or numpy.timedelta64,
            respectively.

    errors : {'ignore', 'raise', 'coerce'}, default 'raise'
        - If 'raise', then invalid parsing will raise an exception.
        - If 'coerce', then invalid parsing will be set as NaT.
        - If 'ignore', then invalid parsing will return the input.

    Returns
    -------
    timedelta64 or numpy.array of timedelta64
        Output type returned if parsing succeeded.

    See Also
    --------
    DataFrame.astype : Cast argument to a specified dtype.
    to_datetime : Convert argument to datetime.

    Examples
    --------

    Parsing a single string to a Timedelta:

    >>> pd.to_timedelta('1 days 06:05:01.00003')
    Timedelta('1 days 06:05:01.000030')
    >>> pd.to_timedelta('15.5us')
    Timedelta('0 days 00:00:00.000015')

    Parsing a list or array of strings:

    >>> pd.to_timedelta(['1 days 06:05:01.00003', '15.5us', 'nan'])
    TimedeltaIndex(['1 days 06:05:01.000030', '0 days 00:00:00.000015', NaT],
                   dtype='timedelta64[ns]', freq=None)

    Converting numbers by specifying the `unit` keyword argument:

    >>> pd.to_timedelta(np.arange(5), unit='s')
    TimedeltaIndex(['00:00:00', '00:00:01', '00:00:02',
                    '00:00:03', '00:00:04'],
                   dtype='timedelta64[ns]', freq=None)
    >>> pd.to_timedelta(np.arange(5), unit='d')
    TimedeltaIndex(['0 days', '1 days', '2 days', '3 days', '4 days'],
                   dtype='timedelta64[ns]', freq=None)

    Returning an ndarray by using the 'box' keyword argument:

    >>> pd.to_timedelta(np.arange(5), box=False)
    array([0, 1, 2, 3, 4], dtype='timedelta64[ns]')
    """
    unit = parse_timedelta_unit(unit)

    if errors not in ("ignore", "raise", "coerce"):
        raise ValueError(
            "errors must be one of 'ignore', 'raise', or 'coerce'}")

    if unit in {"Y", "y", "M"}:
        warnings.warn(
            "M and Y units are deprecated and will be removed in a future version.",
            FutureWarning,
            stacklevel=2,
        )

    if arg is None:
        return arg
    elif isinstance(arg, ABCSeries):
        values = _convert_listlike(arg._values,
                                   unit=unit,
                                   box=False,
                                   errors=errors)
        return arg._constructor(values, index=arg.index, name=arg.name)
    elif isinstance(arg, ABCIndexClass):
        return _convert_listlike(arg,
                                 unit=unit,
                                 box=box,
                                 errors=errors,
                                 name=arg.name)
    elif isinstance(arg, np.ndarray) and arg.ndim == 0:
        # extract array scalar and process below
        arg = arg.item()
    elif is_list_like(arg) and getattr(arg, "ndim", 1) == 1:
        return _convert_listlike(arg, unit=unit, box=box, errors=errors)
    elif getattr(arg, "ndim", 1) > 1:
        raise TypeError(
            "arg must be a string, timedelta, list, tuple, 1-d array, or Series"
        )

    # ...so it must be a scalar value. Return scalar.
    return _coerce_scalar_to_timedelta_type(arg,
                                            unit=unit,
                                            box=box,
                                            errors=errors)
示例#8
0
def to_timedelta(arg, unit='ns', box=True, errors='raise'):
    """
    Convert argument to timedelta.

    Timedeltas are absolute differences in times, expressed in difference
    units (e.g. days, hours, minutes, seconds). This method converts
    an argument from a recognized timedelta format / value into
    a Timedelta type.

    Parameters
    ----------
    arg : str, timedelta, list-like or Series
        The data to be converted to timedelta.
    unit : str, default 'ns'
        Denotes the unit of the arg. Possible values:
        ('Y', 'M', 'W', 'D', 'days', 'day', 'hours', hour', 'hr',
        'h', 'm', 'minute', 'min', 'minutes', 'T', 'S', 'seconds',
        'sec', 'second', 'ms', 'milliseconds', 'millisecond',
        'milli', 'millis', 'L', 'us', 'microseconds', 'microsecond',
        'micro', 'micros', 'U', 'ns', 'nanoseconds', 'nano', 'nanos',
        'nanosecond', 'N').
    box : bool, default True
        - If True returns a Timedelta/TimedeltaIndex of the results.
        - If False returns a numpy.timedelta64 or numpy.darray of
          values of dtype timedelta64[ns].
    errors : {'ignore', 'raise', 'coerce'}, default 'raise'
        - If 'raise', then invalid parsing will raise an exception.
        - If 'coerce', then invalid parsing will be set as NaT.
        - If 'ignore', then invalid parsing will return the input.

    Returns
    -------
    timedelta64 or numpy.array of timedelta64
        Output type returned if parsing succeeded.

    See Also
    --------
    DataFrame.astype : Cast argument to a specified dtype.
    to_datetime : Convert argument to datetime.

    Examples
    --------

    Parsing a single string to a Timedelta:

    >>> pd.to_timedelta('1 days 06:05:01.00003')
    Timedelta('1 days 06:05:01.000030')
    >>> pd.to_timedelta('15.5us')
    Timedelta('0 days 00:00:00.000015')

    Parsing a list or array of strings:

    >>> pd.to_timedelta(['1 days 06:05:01.00003', '15.5us', 'nan'])
    TimedeltaIndex(['1 days 06:05:01.000030', '0 days 00:00:00.000015', NaT],
                   dtype='timedelta64[ns]', freq=None)

    Converting numbers by specifying the `unit` keyword argument:

    >>> pd.to_timedelta(np.arange(5), unit='s')
    TimedeltaIndex(['00:00:00', '00:00:01', '00:00:02',
                    '00:00:03', '00:00:04'],
                   dtype='timedelta64[ns]', freq=None)
    >>> pd.to_timedelta(np.arange(5), unit='d')
    TimedeltaIndex(['0 days', '1 days', '2 days', '3 days', '4 days'],
                   dtype='timedelta64[ns]', freq=None)

    Returning an ndarray by using the 'box' keyword argument:

    >>> pd.to_timedelta(np.arange(5), box=False)
    array([0, 1, 2, 3, 4], dtype='timedelta64[ns]')
    """
    unit = parse_timedelta_unit(unit)

    if errors not in ('ignore', 'raise', 'coerce'):
        raise ValueError("errors must be one of 'ignore', "
                         "'raise', or 'coerce'}")

    if arg is None:
        return arg
    elif isinstance(arg, ABCSeries):
        from pandas import Series
        values = _convert_listlike(arg._values, unit=unit,
                                   box=False, errors=errors)
        return Series(values, index=arg.index, name=arg.name)
    elif isinstance(arg, ABCIndexClass):
        return _convert_listlike(arg, unit=unit, box=box,
                                 errors=errors, name=arg.name)
    elif isinstance(arg, np.ndarray) and arg.ndim == 0:
        # extract array scalar and process below
        arg = arg.item()
    elif is_list_like(arg) and getattr(arg, 'ndim', 1) == 1:
        return _convert_listlike(arg, unit=unit, box=box, errors=errors)
    elif getattr(arg, 'ndim', 1) > 1:
        raise TypeError('arg must be a string, timedelta, list, tuple, '
                        '1-d array, or Series')

    # ...so it must be a scalar value. Return scalar.
    return _coerce_scalar_to_timedelta_type(arg, unit=unit,
                                            box=box, errors=errors)
示例#9
0
def to_timedelta(arg, unit='ns', box=True, errors='raise'):
    """
    Convert argument to timedelta

    Parameters
    ----------
    arg : string, timedelta, list, tuple, 1-d array, or Series
    unit : string, {'Y', 'M', 'W', 'D', 'days', 'day',
                    'hours', hour', 'hr', 'h', 'm', 'minute', 'min', 'minutes',
                    'T', 'S', 'seconds', 'sec', 'second', 'ms',
                    'milliseconds', 'millisecond', 'milli', 'millis', 'L',
                    'us', 'microseconds', 'microsecond', 'micro', 'micros',
                    'U', 'ns', 'nanoseconds', 'nano', 'nanos', 'nanosecond'
                    'N'}, optional
        Denote the unit of the input, if input is an integer. Default 'ns'.
    box : boolean, default True
        - If True returns a Timedelta/TimedeltaIndex of the results
        - if False returns a np.timedelta64 or ndarray of values of dtype
          timedelta64[ns]
    errors : {'ignore', 'raise', 'coerce'}, default 'raise'
        - If 'raise', then invalid parsing will raise an exception
        - If 'coerce', then invalid parsing will be set as NaT
        - If 'ignore', then invalid parsing will return the input

    Returns
    -------
    ret : timedelta64/arrays of timedelta64 if parsing succeeded

    Examples
    --------

    Parsing a single string to a Timedelta:

    >>> pd.to_timedelta('1 days 06:05:01.00003')
    Timedelta('1 days 06:05:01.000030')
    >>> pd.to_timedelta('15.5us')
    Timedelta('0 days 00:00:00.000015')

    Parsing a list or array of strings:

    >>> pd.to_timedelta(['1 days 06:05:01.00003', '15.5us', 'nan'])
    TimedeltaIndex(['1 days 06:05:01.000030', '0 days 00:00:00.000015', NaT],
                   dtype='timedelta64[ns]', freq=None)

    Converting numbers by specifying the `unit` keyword argument:

    >>> pd.to_timedelta(np.arange(5), unit='s')
    TimedeltaIndex(['00:00:00', '00:00:01', '00:00:02',
                    '00:00:03', '00:00:04'],
                   dtype='timedelta64[ns]', freq=None)
    >>> pd.to_timedelta(np.arange(5), unit='d')
    TimedeltaIndex(['0 days', '1 days', '2 days', '3 days', '4 days'],
                   dtype='timedelta64[ns]', freq=None)

    See also
    --------
    pandas.DataFrame.astype : Cast argument to a specified dtype.
    pandas.to_datetime : Convert argument to datetime.
    """
    unit = parse_timedelta_unit(unit)

    if errors not in ('ignore', 'raise', 'coerce'):
        raise ValueError("errors must be one of 'ignore', "
                         "'raise', or 'coerce'}")

    if arg is None:
        return arg
    elif isinstance(arg, ABCSeries):
        from pandas import Series
        values = _convert_listlike(arg._values, unit=unit,
                                   box=False, errors=errors)
        return Series(values, index=arg.index, name=arg.name)
    elif isinstance(arg, ABCIndexClass):
        return _convert_listlike(arg, unit=unit, box=box,
                                 errors=errors, name=arg.name)
    elif isinstance(arg, np.ndarray) and arg.ndim == 0:
        # extract array scalar and process below
        arg = arg.item()
    elif is_list_like(arg) and getattr(arg, 'ndim', 1) == 1:
        return _convert_listlike(arg, unit=unit, box=box, errors=errors)
    elif getattr(arg, 'ndim', 1) > 1:
        raise TypeError('arg must be a string, timedelta, list, tuple, '
                        '1-d array, or Series')

    # ...so it must be a scalar value. Return scalar.
    return _coerce_scalar_to_timedelta_type(arg, unit=unit,
                                            box=box, errors=errors)
示例#10
0
def to_timedelta(arg, unit='ns', box=True, errors='raise'):
    """
    Convert argument to timedelta

    Parameters
    ----------
    arg : string, timedelta, list, tuple, 1-d array, or Series
    unit : str, optional
        Denote the unit of the input, if input is an integer. Default 'ns'.
        Possible values:
        {'Y', 'M', 'W', 'D', 'days', 'day', 'hours', hour', 'hr', 'h',
        'm', 'minute', 'min', 'minutes', 'T', 'S', 'seconds', 'sec', 'second',
        'ms', 'milliseconds', 'millisecond', 'milli', 'millis', 'L',
        'us', 'microseconds', 'microsecond', 'micro', 'micros', 'U',
        'ns', 'nanoseconds', 'nano', 'nanos', 'nanosecond', 'N'}
    box : boolean, default True
        - If True returns a Timedelta/TimedeltaIndex of the results
        - if False returns a np.timedelta64 or ndarray of values of dtype
          timedelta64[ns]
    errors : {'ignore', 'raise', 'coerce'}, default 'raise'
        - If 'raise', then invalid parsing will raise an exception
        - If 'coerce', then invalid parsing will be set as NaT
        - If 'ignore', then invalid parsing will return the input

    Returns
    -------
    ret : timedelta64/arrays of timedelta64 if parsing succeeded

    Examples
    --------

    Parsing a single string to a Timedelta:

    >>> pd.to_timedelta('1 days 06:05:01.00003')
    Timedelta('1 days 06:05:01.000030')
    >>> pd.to_timedelta('15.5us')
    Timedelta('0 days 00:00:00.000015')

    Parsing a list or array of strings:

    >>> pd.to_timedelta(['1 days 06:05:01.00003', '15.5us', 'nan'])
    TimedeltaIndex(['1 days 06:05:01.000030', '0 days 00:00:00.000015', NaT],
                   dtype='timedelta64[ns]', freq=None)

    Converting numbers by specifying the `unit` keyword argument:

    >>> pd.to_timedelta(np.arange(5), unit='s')
    TimedeltaIndex(['00:00:00', '00:00:01', '00:00:02',
                    '00:00:03', '00:00:04'],
                   dtype='timedelta64[ns]', freq=None)
    >>> pd.to_timedelta(np.arange(5), unit='d')
    TimedeltaIndex(['0 days', '1 days', '2 days', '3 days', '4 days'],
                   dtype='timedelta64[ns]', freq=None)

    See Also
    --------
    pandas.DataFrame.astype : Cast argument to a specified dtype.
    pandas.to_datetime : Convert argument to datetime.
    """
    unit = parse_timedelta_unit(unit)

    if errors not in ('ignore', 'raise', 'coerce'):
        raise ValueError("errors must be one of 'ignore', "
                         "'raise', or 'coerce'}")

    if arg is None:
        return arg
    elif isinstance(arg, ABCSeries):
        from pandas import Series
        values = _convert_listlike(arg._values,
                                   unit=unit,
                                   box=False,
                                   errors=errors)
        return Series(values, index=arg.index, name=arg.name)
    elif isinstance(arg, ABCIndexClass):
        return _convert_listlike(arg,
                                 unit=unit,
                                 box=box,
                                 errors=errors,
                                 name=arg.name)
    elif isinstance(arg, np.ndarray) and arg.ndim == 0:
        # extract array scalar and process below
        arg = arg.item()
    elif is_list_like(arg) and getattr(arg, 'ndim', 1) == 1:
        return _convert_listlike(arg, unit=unit, box=box, errors=errors)
    elif getattr(arg, 'ndim', 1) > 1:
        raise TypeError('arg must be a string, timedelta, list, tuple, '
                        '1-d array, or Series')

    # ...so it must be a scalar value. Return scalar.
    return _coerce_scalar_to_timedelta_type(arg,
                                            unit=unit,
                                            box=box,
                                            errors=errors)
示例#11
0
def sequence_to_td64ns(
    data, copy: bool = False, unit=None, errors="raise"
) -> tuple[np.ndarray, Tick | None]:
    """
    Parameters
    ----------
    data : list-like
    copy : bool, default False
    unit : str, optional
        The timedelta unit to treat integers as multiples of. For numeric
        data this defaults to ``'ns'``.
        Must be un-specified if the data contains a str and ``errors=="raise"``.
    errors : {"raise", "coerce", "ignore"}, default "raise"
        How to handle elements that cannot be converted to timedelta64[ns].
        See ``pandas.to_timedelta`` for details.

    Returns
    -------
    converted : numpy.ndarray
        The sequence converted to a numpy array with dtype ``timedelta64[ns]``.
    inferred_freq : Tick or None
        The inferred frequency of the sequence.

    Raises
    ------
    ValueError : Data cannot be converted to timedelta64[ns].

    Notes
    -----
    Unlike `pandas.to_timedelta`, if setting ``errors=ignore`` will not cause
    errors to be ignored; they are caught and subsequently ignored at a
    higher level.
    """
    assert unit not in ["Y", "y", "M"]  # caller is responsible for checking

    inferred_freq = None
    if unit is not None:
        unit = parse_timedelta_unit(unit)

    data, copy = dtl.ensure_arraylike_for_datetimelike(
        data, copy, cls_name="TimedeltaArray"
    )

    if isinstance(data, TimedeltaArray):
        inferred_freq = data.freq

    # Convert whatever we have into timedelta64[ns] dtype
    if is_object_dtype(data.dtype) or is_string_dtype(data.dtype):
        # no need to make a copy, need to convert if string-dtyped
        data = _objects_to_td64ns(data, unit=unit, errors=errors)
        copy = False

    elif is_integer_dtype(data.dtype):
        # treat as multiples of the given unit
        data, copy_made = ints_to_td64ns(data, unit=unit)
        copy = copy and not copy_made

    elif is_float_dtype(data.dtype):
        # cast the unit, multiply base/frac separately
        # to avoid precision issues from float -> int
        mask = np.isnan(data)
        # The next few lines are effectively a vectorized 'cast_from_unit'
        m, p = precision_from_unit(unit or "ns")
        base = data.astype(np.int64)
        frac = data - base
        if p:
            frac = np.round(frac, p)
        data = (base * m + (frac * m).astype(np.int64)).view("timedelta64[ns]")
        data[mask] = iNaT
        copy = False

    elif is_timedelta64_dtype(data.dtype):
        if data.dtype != TD64NS_DTYPE:
            # non-nano unit
            data = astype_overflowsafe(data, dtype=TD64NS_DTYPE)
            copy = False

    else:
        # This includes datetime64-dtype, see GH#23539, GH#29794
        raise TypeError(f"dtype {data.dtype} cannot be converted to timedelta64[ns]")

    data = np.array(data, copy=copy)

    assert data.dtype == "m8[ns]", data
    return data, inferred_freq