def setup(self): N = 10**5 ncats = 100 self.s_str = pd.Series(tm.makeCategoricalIndex(N, ncats)).astype(str) self.s_str_cat = pd.Series(self.s_str, dtype="category") with warnings.catch_warnings(record=True): str_cat_type = pd.CategoricalDtype(set(self.s_str), ordered=True) self.s_str_cat_ordered = self.s_str.astype(str_cat_type) self.s_int = pd.Series(np.random.randint(0, ncats, size=N)) self.s_int_cat = pd.Series(self.s_int, dtype="category") with warnings.catch_warnings(record=True): int_cat_type = pd.CategoricalDtype(set(self.s_int), ordered=True) self.s_int_cat_ordered = self.s_int.astype(int_cat_type)
def test_construction_with_categorical_index(self): ci = tm.makeCategoricalIndex(10) ci.name = "B" # with Categorical df = DataFrame({"A": np.random.randn(10), "B": ci.values}) idf = df.set_index("B") tm.assert_index_equal(idf.index, ci) # from a CategoricalIndex df = DataFrame({"A": np.random.randn(10), "B": ci}) idf = df.set_index("B") tm.assert_index_equal(idf.index, ci) # round-trip idf = idf.reset_index().set_index("B") tm.assert_index_equal(idf.index, ci)
def test_view_i8(self): # GH#25464 ci = tm.makeCategoricalIndex(100) msg = "When changing to a larger dtype, its size must be a divisor" with pytest.raises(ValueError, match=msg): ci.view("i8") with pytest.raises(ValueError, match=msg): ci._data.view("i8") ci = ci[:-4] # length divisible by 8 res = ci.view("i8") expected = ci._data.codes.view("i8") tm.assert_numpy_array_equal(res, expected) cat = ci._data tm.assert_numpy_array_equal(cat.view("i8"), expected)
class TestSeriesMisc: def test_scalarop_preserve_name(self, datetime_series): result = datetime_series * 2 assert result.name == datetime_series.name def test_copy_name(self, datetime_series): result = datetime_series.copy() assert result.name == datetime_series.name def test_copy_index_name_checking(self, datetime_series): # don't want to be able to modify the index stored elsewhere after # making a copy datetime_series.index.name = None assert datetime_series.index.name is None assert datetime_series is datetime_series cp = datetime_series.copy() cp.index.name = "foo" printing.pprint_thing(datetime_series.index.name) assert datetime_series.index.name is None def test_append_preserve_name(self, datetime_series): result = datetime_series[:5].append(datetime_series[5:]) assert result.name == datetime_series.name def test_binop_maybe_preserve_name(self, datetime_series): # names match, preserve result = datetime_series * datetime_series assert result.name == datetime_series.name result = datetime_series.mul(datetime_series) assert result.name == datetime_series.name result = datetime_series * datetime_series[:-2] assert result.name == datetime_series.name # names don't match, don't preserve cp = datetime_series.copy() cp.name = "something else" result = datetime_series + cp assert result.name is None result = datetime_series.add(cp) assert result.name is None ops = ["add", "sub", "mul", "div", "truediv", "floordiv", "mod", "pow"] ops = ops + ["r" + op for op in ops] for op in ops: # names match, preserve s = datetime_series.copy() result = getattr(s, op)(s) assert result.name == datetime_series.name # names don't match, don't preserve cp = datetime_series.copy() cp.name = "changed" result = getattr(s, op)(cp) assert result.name is None def test_getitem_preserve_name(self, datetime_series): result = datetime_series[datetime_series > 0] assert result.name == datetime_series.name result = datetime_series[[0, 2, 4]] assert result.name == datetime_series.name result = datetime_series[5:10] assert result.name == datetime_series.name def test_pickle_datetimes(self, datetime_series): unp_ts = self._pickle_roundtrip(datetime_series) tm.assert_series_equal(unp_ts, datetime_series) def test_pickle_strings(self, string_series): unp_series = self._pickle_roundtrip(string_series) tm.assert_series_equal(unp_series, string_series) def _pickle_roundtrip(self, obj): with tm.ensure_clean() as path: obj.to_pickle(path) unpickled = pd.read_pickle(path) return unpickled def test_constructor_dict(self): d = {"a": 0.0, "b": 1.0, "c": 2.0} result = Series(d) expected = Series(d, index=sorted(d.keys())) tm.assert_series_equal(result, expected) result = Series(d, index=["b", "c", "d", "a"]) expected = Series([1, 2, np.nan, 0], index=["b", "c", "d", "a"]) tm.assert_series_equal(result, expected) def test_constructor_subclass_dict(self, dict_subclass): data = dict_subclass((x, 10.0 * x) for x in range(10)) series = Series(data) expected = Series(dict(data.items())) tm.assert_series_equal(series, expected) def test_constructor_ordereddict(self): # GH3283 data = OrderedDict((f"col{i}", np.random.random()) for i in range(12)) series = Series(data) expected = Series(list(data.values()), list(data.keys())) tm.assert_series_equal(series, expected) # Test with subclass class A(OrderedDict): pass series = Series(A(data)) tm.assert_series_equal(series, expected) def test_constructor_dict_multiindex(self): d = {("a", "a"): 0.0, ("b", "a"): 1.0, ("b", "c"): 2.0} _d = sorted(d.items()) result = Series(d) expected = Series([x[1] for x in _d], index=pd.MultiIndex.from_tuples([x[0] for x in _d])) tm.assert_series_equal(result, expected) d["z"] = 111.0 _d.insert(0, ("z", d["z"])) result = Series(d) expected = Series([x[1] for x in _d], index=pd.Index([x[0] for x in _d], tupleize_cols=False)) result = result.reindex(index=expected.index) tm.assert_series_equal(result, expected) def test_constructor_dict_timedelta_index(self): # GH #12169 : Resample category data with timedelta index # construct Series from dict as data and TimedeltaIndex as index # will result NaN in result Series data expected = Series(data=["A", "B", "C"], index=pd.to_timedelta([0, 10, 20], unit="s")) result = Series( data={ pd.to_timedelta(0, unit="s"): "A", pd.to_timedelta(10, unit="s"): "B", pd.to_timedelta(20, unit="s"): "C", }, index=pd.to_timedelta([0, 10, 20], unit="s"), ) tm.assert_series_equal(result, expected) def test_sparse_accessor_updates_on_inplace(self): s = pd.Series([1, 1, 2, 3], dtype="Sparse[int]") return_value = s.drop([0, 1], inplace=True) assert return_value is None assert s.sparse.density == 1.0 def test_tab_completion(self): # GH 9910 s = Series(list("abcd")) # Series of str values should have .str but not .dt/.cat in __dir__ assert "str" in dir(s) assert "dt" not in dir(s) assert "cat" not in dir(s) # similarly for .dt s = Series(date_range("1/1/2015", periods=5)) assert "dt" in dir(s) assert "str" not in dir(s) assert "cat" not in dir(s) # Similarly for .cat, but with the twist that str and dt should be # there if the categories are of that type first cat and str. s = Series(list("abbcd"), dtype="category") assert "cat" in dir(s) assert "str" in dir(s) # as it is a string categorical assert "dt" not in dir(s) # similar to cat and str s = Series(date_range("1/1/2015", periods=5)).astype("category") assert "cat" in dir(s) assert "str" not in dir(s) assert "dt" in dir(s) # as it is a datetime categorical def test_tab_completion_with_categorical(self): # test the tab completion display ok_for_cat = [ "categories", "codes", "ordered", "set_categories", "add_categories", "remove_categories", "rename_categories", "reorder_categories", "remove_unused_categories", "as_ordered", "as_unordered", ] def get_dir(s): results = [r for r in s.cat.__dir__() if not r.startswith("_")] return sorted(set(results)) s = Series(list("aabbcde")).astype("category") results = get_dir(s) tm.assert_almost_equal(results, sorted(set(ok_for_cat))) @pytest.mark.parametrize( "index", [ tm.makeUnicodeIndex(10), tm.makeStringIndex(10), tm.makeCategoricalIndex(10), Index(["foo", "bar", "baz"] * 2), tm.makeDateIndex(10), tm.makePeriodIndex(10), tm.makeTimedeltaIndex(10), tm.makeIntIndex(10), tm.makeUIntIndex(10), tm.makeIntIndex(10), tm.makeFloatIndex(10), Index([True, False]), Index([f"a{i}" for i in range(101)]), pd.MultiIndex.from_tuples(zip("ABCD", "EFGH")), pd.MultiIndex.from_tuples(zip([0, 1, 2, 3], "EFGH")), ], ) def test_index_tab_completion(self, index): # dir contains string-like values of the Index. s = pd.Series(index=index, dtype=object) dir_s = dir(s) for i, x in enumerate(s.index.unique(level=0)): if i < 100: assert not isinstance( x, str) or not x.isidentifier() or x in dir_s else: assert x not in dir_s def test_not_hashable(self): s_empty = Series(dtype=object) s = Series([1]) msg = "'Series' objects are mutable, thus they cannot be hashed" with pytest.raises(TypeError, match=msg): hash(s_empty) with pytest.raises(TypeError, match=msg): hash(s) def test_contains(self, datetime_series): tm.assert_contains_all(datetime_series.index, datetime_series) def test_iter_datetimes(self, datetime_series): for i, val in enumerate(datetime_series): assert val == datetime_series[i] def test_iter_strings(self, string_series): for i, val in enumerate(string_series): assert val == string_series[i] def test_keys(self, datetime_series): # HACK: By doing this in two stages, we avoid 2to3 wrapping the call # to .keys() in a list() getkeys = datetime_series.keys assert getkeys() is datetime_series.index def test_values(self, datetime_series): tm.assert_almost_equal(datetime_series.values, datetime_series, check_dtype=False) def test_iteritems_datetimes(self, datetime_series): for idx, val in datetime_series.iteritems(): assert val == datetime_series[idx] def test_iteritems_strings(self, string_series): for idx, val in string_series.iteritems(): assert val == string_series[idx] # assert is lazy (generators don't define reverse, lists do) assert not hasattr(string_series.iteritems(), "reverse") def test_items_datetimes(self, datetime_series): for idx, val in datetime_series.items(): assert val == datetime_series[idx] def test_items_strings(self, string_series): for idx, val in string_series.items(): assert val == string_series[idx] # assert is lazy (generators don't define reverse, lists do) assert not hasattr(string_series.items(), "reverse") def test_raise_on_info(self): s = Series(np.random.randn(10)) msg = "'Series' object has no attribute 'info'" with pytest.raises(AttributeError, match=msg): s.info() def test_copy(self): for deep in [None, False, True]: s = Series(np.arange(10), dtype="float64") # default deep is True if deep is None: s2 = s.copy() else: s2 = s.copy(deep=deep) s2[::2] = np.NaN if deep is None or deep is True: # Did not modify original Series assert np.isnan(s2[0]) assert not np.isnan(s[0]) else: # we DID modify the original Series assert np.isnan(s2[0]) assert np.isnan(s[0]) def test_copy_tzaware(self): # GH#11794 # copy of tz-aware expected = Series([Timestamp("2012/01/01", tz="UTC")]) expected2 = Series([Timestamp("1999/01/01", tz="UTC")]) for deep in [None, False, True]: s = Series([Timestamp("2012/01/01", tz="UTC")]) if deep is None: s2 = s.copy() else: s2 = s.copy(deep=deep) s2[0] = pd.Timestamp("1999/01/01", tz="UTC") # default deep is True if deep is None or deep is True: # Did not modify original Series tm.assert_series_equal(s2, expected2) tm.assert_series_equal(s, expected) else: # we DID modify the original Series tm.assert_series_equal(s2, expected2) tm.assert_series_equal(s, expected2) def test_axis_alias(self): s = Series([1, 2, np.nan]) tm.assert_series_equal(s.dropna(axis="rows"), s.dropna(axis="index")) assert s.dropna().sum("rows") == 3 assert s._get_axis_number("rows") == 0 assert s._get_axis_name("rows") == "index" def test_class_axis(self): # https://github.com/pandas-dev/pandas/issues/18147 # no exception and no empty docstring assert pydoc.getdoc(Series.index) def test_numpy_unique(self, datetime_series): # it works! np.unique(datetime_series) def test_item(self): s = Series([1]) result = s.item() assert result == 1 assert result == s.iloc[0] assert isinstance(result, int) # i.e. not np.int64 ser = Series([0.5], index=[3]) result = ser.item() assert isinstance(result, float) assert result == 0.5 ser = Series([1, 2]) msg = "can only convert an array of size 1" with pytest.raises(ValueError, match=msg): ser.item() dti = pd.date_range("2016-01-01", periods=2) with pytest.raises(ValueError, match=msg): dti.item() with pytest.raises(ValueError, match=msg): Series(dti).item() val = dti[:1].item() assert isinstance(val, Timestamp) val = Series(dti)[:1].item() assert isinstance(val, Timestamp) tdi = dti - dti with pytest.raises(ValueError, match=msg): tdi.item() with pytest.raises(ValueError, match=msg): Series(tdi).item() val = tdi[:1].item() assert isinstance(val, Timedelta) val = Series(tdi)[:1].item() assert isinstance(val, Timedelta) # Case where ser[0] would not work ser = Series(dti, index=[5, 6]) val = ser[:1].item() assert val == dti[0] def test_ndarray_compat(self): # test numpy compat with Series as sub-class of NDFrame tsdf = DataFrame( np.random.randn(1000, 3), columns=["A", "B", "C"], index=date_range("1/1/2000", periods=1000), ) def f(x): return x[x.idxmax()] result = tsdf.apply(f) expected = tsdf.max() tm.assert_series_equal(result, expected) # using an ndarray like function s = Series(np.random.randn(10)) result = Series(np.ones_like(s)) expected = Series(1, index=range(10), dtype="float64") tm.assert_series_equal(result, expected) # ravel s = Series(np.random.randn(10)) tm.assert_almost_equal(s.ravel(order="F"), s.values.ravel(order="F")) def test_str_accessor_updates_on_inplace(self): s = pd.Series(list("abc")) return_value = s.drop([0], inplace=True) assert return_value is None assert len(s.str.lower()) == 2 def test_str_attribute(self): # GH9068 methods = ["strip", "rstrip", "lstrip"] s = Series([" jack", "jill ", " jesse ", "frank"]) for method in methods: expected = Series([getattr(str, method)(x) for x in s.values]) tm.assert_series_equal( getattr(Series.str, method)(s.str), expected) # str accessor only valid with string values s = Series(range(5)) with pytest.raises(AttributeError, match="only use .str accessor"): s.str.repeat(2) def test_empty_method(self): s_empty = pd.Series(dtype=object) assert s_empty.empty s2 = pd.Series(index=[1], dtype=object) for full_series in [pd.Series([1]), s2]: assert not full_series.empty @async_mark() @td.check_file_leaks async def test_tab_complete_warning(self, ip): # https://github.com/pandas-dev/pandas/issues/16409 pytest.importorskip("IPython", minversion="6.0.0") from IPython.core.completer import provisionalcompleter code = "import pandas as pd; s = pd.Series()" await ip.run_code(code) # TODO: remove it when Ipython updates # GH 33567, jedi version raises Deprecation warning in Ipython import jedi if jedi.__version__ < "0.17.0": warning = tm.assert_produces_warning(None) else: warning = tm.assert_produces_warning(DeprecationWarning, check_stacklevel=False) with warning: with provisionalcompleter("ignore"): list(ip.Completer.completions("s.", 1)) def test_integer_series_size(self): # GH 25580 s = Series(range(9)) assert s.size == 9 s = Series(range(9), dtype="Int64") assert s.size == 9 def test_attrs(self): s = pd.Series([0, 1], name="abc") assert s.attrs == {} s.attrs["version"] = 1 result = s + 1 assert result.attrs == {"version": 1} @pytest.mark.parametrize("allows_duplicate_labels", [True, False, None]) def test_set_flags(self, allows_duplicate_labels): df = pd.Series([1, 2]) result = df.set_flags(allows_duplicate_labels=allows_duplicate_labels) if allows_duplicate_labels is None: # We don't update when it's not provided assert result.flags.allows_duplicate_labels is True else: assert result.flags.allows_duplicate_labels is allows_duplicate_labels # We made a copy assert df is not result # We didn't mutate df assert df.flags.allows_duplicate_labels is True # But we didn't copy data result.iloc[0] = 0 assert df.iloc[0] == 0 # Now we do copy. result = df.set_flags(copy=True, allows_duplicate_labels=allows_duplicate_labels) result.iloc[0] = 10 assert df.iloc[0] == 0
) indices_dict = { "unicode": tm.makeUnicodeIndex(100), "string": tm.makeStringIndex(100), "datetime": tm.makeDateIndex(100), "datetime-tz": tm.makeDateIndex(100, tz="US/Pacific"), "period": tm.makePeriodIndex(100), "timedelta": tm.makeTimedeltaIndex(100), "int": tm.makeIntIndex(100), "uint": tm.makeUIntIndex(100), "range": tm.makeRangeIndex(100), "float": tm.makeFloatIndex(100), "bool": tm.makeBoolIndex(10), "categorical": tm.makeCategoricalIndex(100), "interval": tm.makeIntervalIndex(100), "empty": Index([]), "tuples": MultiIndex.from_tuples(zip(["foo", "bar", "baz"], [1, 2, 3])), "mi-with-dt64tz-level": _create_mi_with_dt64tz_level(), "multi": _create_multiindex(), "repeats": Index([0, 0, 1, 1, 2, 2]), } @pytest.fixture(params=indices_dict.keys()) def index(request): """ Fixture for many "simple" kinds of indices. These indices are unlikely to cover corner cases, e.g.
def setup(self): N = 10**5 self.ci = tm.makeCategoricalIndex(N).sort_values() self.c = self.ci.values self.key = self.ci.categories[1]
def index(self, request): return tm.makeCategoricalIndex(100)
class TestSeriesMisc: def test_tab_completion(self): # GH 9910 s = Series(list("abcd")) # Series of str values should have .str but not .dt/.cat in __dir__ assert "str" in dir(s) assert "dt" not in dir(s) assert "cat" not in dir(s) # similarly for .dt s = Series(date_range("1/1/2015", periods=5)) assert "dt" in dir(s) assert "str" not in dir(s) assert "cat" not in dir(s) # Similarly for .cat, but with the twist that str and dt should be # there if the categories are of that type first cat and str. s = Series(list("abbcd"), dtype="category") assert "cat" in dir(s) assert "str" in dir(s) # as it is a string categorical assert "dt" not in dir(s) # similar to cat and str s = Series(date_range("1/1/2015", periods=5)).astype("category") assert "cat" in dir(s) assert "str" not in dir(s) assert "dt" in dir(s) # as it is a datetime categorical def test_tab_completion_with_categorical(self): # test the tab completion display ok_for_cat = [ "categories", "codes", "ordered", "set_categories", "add_categories", "remove_categories", "rename_categories", "reorder_categories", "remove_unused_categories", "as_ordered", "as_unordered", ] def get_dir(s): results = [r for r in s.cat.__dir__() if not r.startswith("_")] return sorted(set(results)) s = Series(list("aabbcde")).astype("category") results = get_dir(s) tm.assert_almost_equal(results, sorted(set(ok_for_cat))) @pytest.mark.parametrize( "index", [ tm.makeUnicodeIndex(10), tm.makeStringIndex(10), tm.makeCategoricalIndex(10), Index(["foo", "bar", "baz"] * 2), tm.makeDateIndex(10), tm.makePeriodIndex(10), tm.makeTimedeltaIndex(10), tm.makeIntIndex(10), tm.makeUIntIndex(10), tm.makeIntIndex(10), tm.makeFloatIndex(10), Index([True, False]), Index([f"a{i}" for i in range(101)]), pd.MultiIndex.from_tuples(zip("ABCD", "EFGH")), pd.MultiIndex.from_tuples(zip([0, 1, 2, 3], "EFGH")), ], ) def test_index_tab_completion(self, index): # dir contains string-like values of the Index. s = Series(index=index, dtype=object) dir_s = dir(s) for i, x in enumerate(s.index.unique(level=0)): if i < 100: assert not isinstance(x, str) or not x.isidentifier() or x in dir_s else: assert x not in dir_s def test_not_hashable(self): s_empty = Series(dtype=object) s = Series([1]) msg = "unhashable type: 'Series'" with pytest.raises(TypeError, match=msg): hash(s_empty) with pytest.raises(TypeError, match=msg): hash(s) def test_contains(self, datetime_series): tm.assert_contains_all(datetime_series.index, datetime_series) def test_raise_on_info(self): s = Series(np.random.randn(10)) msg = "'Series' object has no attribute 'info'" with pytest.raises(AttributeError, match=msg): s.info() def test_axis_alias(self): s = Series([1, 2, np.nan]) tm.assert_series_equal(s.dropna(axis="rows"), s.dropna(axis="index")) assert s.dropna().sum("rows") == 3 assert s._get_axis_number("rows") == 0 assert s._get_axis_name("rows") == "index" def test_class_axis(self): # https://github.com/pandas-dev/pandas/issues/18147 # no exception and no empty docstring assert pydoc.getdoc(Series.index) def test_ndarray_compat(self): # test numpy compat with Series as sub-class of NDFrame tsdf = DataFrame( np.random.randn(1000, 3), columns=["A", "B", "C"], index=date_range("1/1/2000", periods=1000), ) def f(x): return x[x.idxmax()] result = tsdf.apply(f) expected = tsdf.max() tm.assert_series_equal(result, expected) # using an ndarray like function s = Series(np.random.randn(10)) result = Series(np.ones_like(s)) expected = Series(1, index=range(10), dtype="float64") tm.assert_series_equal(result, expected) # ravel s = Series(np.random.randn(10)) tm.assert_almost_equal(s.ravel(order="F"), s.values.ravel(order="F")) def test_empty_method(self): s_empty = Series(dtype=object) assert s_empty.empty s2 = Series(index=[1], dtype=object) for full_series in [Series([1]), s2]: assert not full_series.empty def test_integer_series_size(self): # GH 25580 s = Series(range(9)) assert s.size == 9 s = Series(range(9), dtype="Int64") assert s.size == 9 def test_attrs(self): s = Series([0, 1], name="abc") assert s.attrs == {} s.attrs["version"] = 1 result = s + 1 assert result.attrs == {"version": 1} @skip_if_no("jinja2") def test_inspect_getmembers(self): # GH38782 ser = Series(dtype=object) with tm.assert_produces_warning(None): inspect.getmembers(ser) def test_unknown_attribute(self): # GH#9680 tdi = pd.timedelta_range(start=0, periods=10, freq="1s") ser = Series(np.random.normal(size=10), index=tdi) assert "foo" not in ser.__dict__.keys() msg = "'Series' object has no attribute 'foo'" with pytest.raises(AttributeError, match=msg): ser.foo
class TestSeriesMisc: def test_getitem_preserve_name(self, datetime_series): result = datetime_series[datetime_series > 0] assert result.name == datetime_series.name result = datetime_series[[0, 2, 4]] assert result.name == datetime_series.name result = datetime_series[5:10] assert result.name == datetime_series.name def test_tab_completion(self): # GH 9910 s = Series(list("abcd")) # Series of str values should have .str but not .dt/.cat in __dir__ assert "str" in dir(s) assert "dt" not in dir(s) assert "cat" not in dir(s) # similarly for .dt s = Series(date_range("1/1/2015", periods=5)) assert "dt" in dir(s) assert "str" not in dir(s) assert "cat" not in dir(s) # Similarly for .cat, but with the twist that str and dt should be # there if the categories are of that type first cat and str. s = Series(list("abbcd"), dtype="category") assert "cat" in dir(s) assert "str" in dir(s) # as it is a string categorical assert "dt" not in dir(s) # similar to cat and str s = Series(date_range("1/1/2015", periods=5)).astype("category") assert "cat" in dir(s) assert "str" not in dir(s) assert "dt" in dir(s) # as it is a datetime categorical def test_tab_completion_with_categorical(self): # test the tab completion display ok_for_cat = [ "categories", "codes", "ordered", "set_categories", "add_categories", "remove_categories", "rename_categories", "reorder_categories", "remove_unused_categories", "as_ordered", "as_unordered", ] def get_dir(s): results = [r for r in s.cat.__dir__() if not r.startswith("_")] return sorted(set(results)) s = Series(list("aabbcde")).astype("category") results = get_dir(s) tm.assert_almost_equal(results, sorted(set(ok_for_cat))) @pytest.mark.parametrize( "index", [ tm.makeUnicodeIndex(10), tm.makeStringIndex(10), tm.makeCategoricalIndex(10), Index(["foo", "bar", "baz"] * 2), tm.makeDateIndex(10), tm.makePeriodIndex(10), tm.makeTimedeltaIndex(10), tm.makeIntIndex(10), tm.makeUIntIndex(10), tm.makeIntIndex(10), tm.makeFloatIndex(10), Index([True, False]), Index([f"a{i}" for i in range(101)]), pd.MultiIndex.from_tuples(zip("ABCD", "EFGH")), pd.MultiIndex.from_tuples(zip([0, 1, 2, 3], "EFGH")), ], ) def test_index_tab_completion(self, index): # dir contains string-like values of the Index. s = Series(index=index, dtype=object) dir_s = dir(s) for i, x in enumerate(s.index.unique(level=0)): if i < 100: assert not isinstance( x, str) or not x.isidentifier() or x in dir_s else: assert x not in dir_s def test_not_hashable(self): s_empty = Series(dtype=object) s = Series([1]) msg = "'Series' objects are mutable, thus they cannot be hashed" with pytest.raises(TypeError, match=msg): hash(s_empty) with pytest.raises(TypeError, match=msg): hash(s) def test_contains(self, datetime_series): tm.assert_contains_all(datetime_series.index, datetime_series) def test_values(self, datetime_series): tm.assert_almost_equal(datetime_series.values, datetime_series, check_dtype=False) def test_raise_on_info(self): s = Series(np.random.randn(10)) msg = "'Series' object has no attribute 'info'" with pytest.raises(AttributeError, match=msg): s.info() def test_axis_alias(self): s = Series([1, 2, np.nan]) tm.assert_series_equal(s.dropna(axis="rows"), s.dropna(axis="index")) assert s.dropna().sum("rows") == 3 assert s._get_axis_number("rows") == 0 assert s._get_axis_name("rows") == "index" def test_class_axis(self): # https://github.com/pandas-dev/pandas/issues/18147 # no exception and no empty docstring assert pydoc.getdoc(Series.index) def test_item(self): s = Series([1]) result = s.item() assert result == 1 assert result == s.iloc[0] assert isinstance(result, int) # i.e. not np.int64 ser = Series([0.5], index=[3]) result = ser.item() assert isinstance(result, float) assert result == 0.5 ser = Series([1, 2]) msg = "can only convert an array of size 1" with pytest.raises(ValueError, match=msg): ser.item() dti = pd.date_range("2016-01-01", periods=2) with pytest.raises(ValueError, match=msg): dti.item() with pytest.raises(ValueError, match=msg): Series(dti).item() val = dti[:1].item() assert isinstance(val, Timestamp) val = Series(dti)[:1].item() assert isinstance(val, Timestamp) tdi = dti - dti with pytest.raises(ValueError, match=msg): tdi.item() with pytest.raises(ValueError, match=msg): Series(tdi).item() val = tdi[:1].item() assert isinstance(val, Timedelta) val = Series(tdi)[:1].item() assert isinstance(val, Timedelta) # Case where ser[0] would not work ser = Series(dti, index=[5, 6]) val = ser[:1].item() assert val == dti[0] def test_ndarray_compat(self): # test numpy compat with Series as sub-class of NDFrame tsdf = DataFrame( np.random.randn(1000, 3), columns=["A", "B", "C"], index=date_range("1/1/2000", periods=1000), ) def f(x): return x[x.idxmax()] result = tsdf.apply(f) expected = tsdf.max() tm.assert_series_equal(result, expected) # using an ndarray like function s = Series(np.random.randn(10)) result = Series(np.ones_like(s)) expected = Series(1, index=range(10), dtype="float64") tm.assert_series_equal(result, expected) # ravel s = Series(np.random.randn(10)) tm.assert_almost_equal(s.ravel(order="F"), s.values.ravel(order="F")) def test_empty_method(self): s_empty = Series(dtype=object) assert s_empty.empty s2 = Series(index=[1], dtype=object) for full_series in [Series([1]), s2]: assert not full_series.empty @async_mark() @td.check_file_leaks async def test_tab_complete_warning(self, ip): # https://github.com/pandas-dev/pandas/issues/16409 pytest.importorskip("IPython", minversion="6.0.0") from IPython.core.completer import provisionalcompleter code = "import pandas as pd; s = Series(dtype=object)" await ip.run_code(code) # TODO: remove it when Ipython updates # GH 33567, jedi version raises Deprecation warning in Ipython import jedi if jedi.__version__ < "0.17.0": warning = tm.assert_produces_warning(None) else: warning = tm.assert_produces_warning(DeprecationWarning, check_stacklevel=False) with warning: with provisionalcompleter("ignore"): list(ip.Completer.completions("s.", 1)) def test_integer_series_size(self): # GH 25580 s = Series(range(9)) assert s.size == 9 s = Series(range(9), dtype="Int64") assert s.size == 9 def test_attrs(self): s = Series([0, 1], name="abc") assert s.attrs == {} s.attrs["version"] = 1 result = s + 1 assert result.attrs == {"version": 1} @pytest.mark.parametrize("allows_duplicate_labels", [True, False, None]) def test_set_flags(self, allows_duplicate_labels): df = Series([1, 2]) result = df.set_flags(allows_duplicate_labels=allows_duplicate_labels) if allows_duplicate_labels is None: # We don't update when it's not provided assert result.flags.allows_duplicate_labels is True else: assert result.flags.allows_duplicate_labels is allows_duplicate_labels # We made a copy assert df is not result # We didn't mutate df assert df.flags.allows_duplicate_labels is True # But we didn't copy data result.iloc[0] = 0 assert df.iloc[0] == 0 # Now we do copy. result = df.set_flags(copy=True, allows_duplicate_labels=allows_duplicate_labels) result.iloc[0] = 10 assert df.iloc[0] == 0
def index(self): return tm.makeCategoricalIndex(100)