示例#1
0
文件: missing.py 项目: yaruyi/pandas
def _isna_array(values: ArrayLike, inf_as_na: bool = False):
    """
    Return an array indicating which values of the input array are NaN / NA.

    Parameters
    ----------
    obj: ndarray or ExtensionArray
        The input array whose elements are to be checked.
    inf_as_na: bool
        Whether or not to treat infinite values as NA.

    Returns
    -------
    array-like
        Array of boolean values denoting the NA status of each element.
    """
    dtype = values.dtype

    if is_extension_array_dtype(dtype):
        if inf_as_na and is_categorical_dtype(dtype):
            result = libmissing.isnaobj_old(values.to_numpy())
        else:
            result = values.isna()
    elif is_string_dtype(dtype):
        result = _isna_string_dtype(values, dtype, inf_as_na=inf_as_na)
    elif needs_i8_conversion(dtype):
        # this is the NaT pattern
        result = values.view("i8") == iNaT
    else:
        if inf_as_na:
            result = ~np.isfinite(values)
        else:
            result = np.isnan(values)

    return result
示例#2
0
def _isna_array(values: ArrayLike, inf_as_na: bool = False):
    """
    Return an array indicating which values of the input array are NaN / NA.

    Parameters
    ----------
    obj: ndarray or ExtensionArray
        The input array whose elements are to be checked.
    inf_as_na: bool
        Whether or not to treat infinite values as NA.

    Returns
    -------
    array-like
        Array of boolean values denoting the NA status of each element.
    """
    dtype = values.dtype

    if is_extension_array_dtype(dtype):
        if inf_as_na and is_categorical_dtype(dtype):
            # error: Item "ndarray" of "Union[ExtensionArray, ndarray]" has no attribute
            # "to_numpy"
            result = libmissing.isnaobj_old(
                values.to_numpy()  # type: ignore[union-attr]
            )
        else:
            # error: Item "ndarray" of "Union[ExtensionArray, ndarray]" has no attribute
            # "isna"
            result = values.isna()  # type: ignore[union-attr]
    elif is_string_dtype(dtype):
        # error: Argument 1 to "_isna_string_dtype" has incompatible type
        # "ExtensionArray"; expected "ndarray"
        # error: Argument 2 to "_isna_string_dtype" has incompatible type
        # "ExtensionDtype"; expected "dtype[Any]"
        result = _isna_string_dtype(
            values,
            dtype,
            inf_as_na=inf_as_na  # type: ignore[arg-type]
        )
    elif needs_i8_conversion(dtype):
        # this is the NaT pattern
        result = values.view("i8") == iNaT
    else:
        if inf_as_na:
            # error: Argument 1 to "__call__" of "ufunc" has incompatible type
            # "ExtensionArray"; expected "Union[Union[int, float, complex, str, bytes,
            # generic], Sequence[Union[int, float, complex, str, bytes, generic]],
            # Sequence[Sequence[Any]], _SupportsArray]"
            result = ~np.isfinite(values)  # type: ignore[arg-type]
        else:
            # error: Argument 1 to "__call__" of "ufunc" has incompatible type
            # "ExtensionArray"; expected "Union[Union[int, float, complex, str, bytes,
            # generic], Sequence[Union[int, float, complex, str, bytes, generic]],
            # Sequence[Sequence[Any]], _SupportsArray]"
            result = np.isnan(values)  # type: ignore[arg-type]

    return result
示例#3
0
def extract_bool_array(mask: ArrayLike) -> npt.NDArray[np.bool_]:
    """
    If we have a SparseArray or BooleanArray, convert it to ndarray[bool].
    """
    if isinstance(mask, ExtensionArray):
        # We could have BooleanArray, Sparse[bool], ...
        #  Except for BooleanArray, this is equivalent to just
        #  np.asarray(mask, dtype=bool)
        mask = mask.to_numpy(dtype=bool, na_value=False)

    mask = np.asarray(mask, dtype=bool)
    return mask
示例#4
0
文件: putmask.py 项目: queantt/pandas
def extract_bool_array(mask: ArrayLike) -> np.ndarray:
    """
    If we have a SparseArray or BooleanArray, convert it to ndarray[bool].
    """
    if isinstance(mask, ExtensionArray):
        # We could have BooleanArray, Sparse[bool], ...
        #  Except for BooleanArray, this is equivalent to just
        #  np.asarray(mask, dtype=bool)

        # error: Incompatible types in assignment (expression has type "ndarray",
        # variable has type "ExtensionArray")
        mask = mask.to_numpy(dtype=bool, na_value=False)  # type: ignore[assignment]

    # error: Incompatible types in assignment (expression has type "ndarray", variable
    # has type "ExtensionArray")
    mask = np.asarray(mask, dtype=bool)  # type: ignore[assignment]
    # error: Incompatible return value type (got "ExtensionArray", expected "ndarray")
    return mask  # type: ignore[return-value]
示例#5
0
def ensure_int_or_float(arr: ArrayLike, copy: bool = False) -> np.ndarray:
    """
    Ensure that an dtype array of some integer dtype
    has an int64 dtype if possible.
    If it's not possible, potentially because of overflow,
    convert the array to float64 instead.

    Parameters
    ----------
    arr : array-like
          The array whose data type we want to enforce.
    copy: bool
          Whether to copy the original array or reuse
          it in place, if possible.

    Returns
    -------
    out_arr : The input array cast as int64 if
              possible without overflow.
              Otherwise the input array cast to float64.

    Notes
    -----
    If the array is explicitly of type uint64 the type
    will remain unchanged.
    """
    # TODO: GH27506 potential bug with ExtensionArrays
    try:
        # error: Unexpected keyword argument "casting" for "astype"
        return arr.astype("int64", copy=copy,
                          casting="safe")  # type: ignore[call-arg]
    except TypeError:
        pass
    try:
        # error: Unexpected keyword argument "casting" for "astype"
        return arr.astype("uint64", copy=copy,
                          casting="safe")  # type: ignore[call-arg]
    except TypeError:
        if is_extension_array_dtype(arr.dtype):
            # pandas/core/dtypes/common.py:168: error: Item "ndarray" of
            # "Union[ExtensionArray, ndarray]" has no attribute "to_numpy"  [union-attr]
            return arr.to_numpy(  # type: ignore[union-attr]
                dtype="float64", na_value=np.nan)
        return arr.astype("float64", copy=copy)
示例#6
0
文件: missing.py 项目: YarShev/pandas
def _isna_array(values: ArrayLike, inf_as_na: bool = False):
    """
    Return an array indicating which values of the input array are NaN / NA.

    Parameters
    ----------
    obj: ndarray or ExtensionArray
        The input array whose elements are to be checked.
    inf_as_na: bool
        Whether or not to treat infinite values as NA.

    Returns
    -------
    array-like
        Array of boolean values denoting the NA status of each element.
    """
    dtype = values.dtype

    if not isinstance(values, np.ndarray):
        # i.e. ExtensionArray
        if inf_as_na and is_categorical_dtype(dtype):
            result = libmissing.isnaobj(values.to_numpy(), inf_as_na=inf_as_na)
        else:
            # error: Incompatible types in assignment (expression has type
            # "Union[ndarray[Any, Any], ExtensionArraySupportsAnyAll]", variable has
            # type "ndarray[Any, dtype[bool_]]")
            result = values.isna()  # type: ignore[assignment]
    elif is_string_or_object_np_dtype(values.dtype):
        result = _isna_string_dtype(values, inf_as_na=inf_as_na)
    elif needs_i8_conversion(dtype):
        # this is the NaT pattern
        result = values.view("i8") == iNaT
    else:
        if inf_as_na:
            result = ~np.isfinite(values)
        else:
            result = np.isnan(values)

    return result
示例#7
0
def ensure_int_or_float(arr: ArrayLike, copy: bool = False) -> np.array:
    """
    Ensure that an dtype array of some integer dtype
    has an int64 dtype if possible.
    If it's not possible, potentially because of overflow,
    convert the array to float64 instead.

    Parameters
    ----------
    arr : array-like
          The array whose data type we want to enforce.
    copy: bool
          Whether to copy the original array or reuse
          it in place, if possible.

    Returns
    -------
    out_arr : The input array cast as int64 if
              possible without overflow.
              Otherwise the input array cast to float64.

    Notes
    -----
    If the array is explicitly of type uint64 the type
    will remain unchanged.
    """
    # TODO: GH27506 potential bug with ExtensionArrays
    try:
        return arr.astype("int64", copy=copy, casting="safe")  # type: ignore
    except TypeError:
        pass
    try:
        return arr.astype("uint64", copy=copy, casting="safe")  # type: ignore
    except TypeError:
        if is_extension_array_dtype(arr.dtype):
            return arr.to_numpy(dtype="float64", na_value=np.nan)
        return arr.astype("float64", copy=copy)