def decorator(accessor): if hasattr(cls, name): msg = f"Attribute {name} will be overidden in {cls.__name__}" warnings.warn(msg) cached_accessor = CachedAccessor(name, accessor) cls._accessors.add(name) setattr(cls, name, cached_accessor) return accessor
class IndexOpsMixin(object, metaclass=ABCMeta): """common ops mixin to support a unified interface / docs for Series / Index Assuming there are following attributes or properties and function. :ivar _anchor: Parent's Koalas DataFrame :type _anchor: ks.DataFrame """ def __init__(self, anchor: DataFrame): assert anchor is not None self._anchor = anchor @property @abstractmethod def _internal(self) -> InternalFrame: pass @property def _kdf(self) -> DataFrame: return self._anchor @abstractmethod def _with_new_scol(self, scol: spark.Column): pass spark = CachedAccessor("spark", SparkIndexOpsMethods) @property def spark_column(self): warnings.warn( "Series.spark_column is deprecated as of Series.spark.column. " "Please use the API instead.", FutureWarning, ) return self.spark.column spark_column.__doc__ = SparkIndexOpsMethods.column.__doc__ # arithmetic operators __neg__ = column_op(Column.__neg__) def __add__(self, other): if isinstance(self.spark.data_type, StringType): # Concatenate string columns if isinstance(other, IndexOpsMixin) and isinstance( other.spark.data_type, StringType): return column_op(F.concat)(self, other) # Handle df['col'] + 'literal' elif isinstance(other, str): return column_op(F.concat)(self, F.lit(other)) else: raise TypeError( "string addition can only be applied to string series or literals." ) else: return column_op(Column.__add__)(self, other) def __sub__(self, other): if isinstance(self.spark.data_type, TimestampType): # Note that timestamp subtraction casts arguments to integer. This is to mimic pandas's # behaviors. pandas returns 'timedelta64[ns]' from 'datetime64[ns]'s subtraction. msg = ( "Note that there is a behavior difference of timestamp subtraction. " "The timestamp subtraction returns an integer in seconds, " "whereas pandas returns 'timedelta64[ns]'.") if isinstance(other, IndexOpsMixin) and isinstance( other.spark.data_type, TimestampType): warnings.warn(msg, UserWarning) return self.astype("bigint") - other.astype("bigint") elif isinstance(other, datetime.datetime): warnings.warn(msg, UserWarning) return self.astype("bigint") - F.lit(other).cast( as_spark_type("bigint")) else: raise TypeError( "datetime subtraction can only be applied to datetime series." ) elif isinstance(self.spark.data_type, DateType): # Note that date subtraction casts arguments to integer. This is to mimic pandas's # behaviors. pandas returns 'timedelta64[ns]' in days from date's subtraction. msg = ( "Note that there is a behavior difference of date subtraction. " "The date subtraction returns an integer in days, " "whereas pandas returns 'timedelta64[ns]'.") if isinstance(other, IndexOpsMixin) and isinstance( other.spark.data_type, DateType): warnings.warn(msg, UserWarning) return column_op(F.datediff)(self, other).astype("bigint") elif isinstance(other, datetime.date) and not isinstance( other, datetime.datetime): warnings.warn(msg, UserWarning) return column_op(F.datediff)(self, F.lit(other)).astype("bigint") else: raise TypeError( "date subtraction can only be applied to date series.") return column_op(Column.__sub__)(self, other) __mul__ = column_op(Column.__mul__) def __truediv__(self, other): """ __truediv__ has different behaviour between pandas and PySpark for several cases. 1. When divide np.inf by zero, PySpark returns null whereas pandas returns np.inf 2. When divide positive number by zero, PySpark returns null whereas pandas returns np.inf 3. When divide -np.inf by zero, PySpark returns null whereas pandas returns -np.inf 4. When divide negative number by zero, PySpark returns null whereas pandas returns -np.inf +-------------------------------------------+ | dividend (divisor: 0) | PySpark | pandas | |-----------------------|---------|---------| | np.inf | null | np.inf | | -np.inf | null | -np.inf | | 10 | null | np.inf | | -10 | null | -np.inf | +-----------------------|---------|---------+ """ def truediv(left, right): return F.when( F.lit(right != 0) | F.lit(right).isNull(), left.__div__(right)).otherwise( F.when( F.lit(left == np.inf) | F.lit(left == -np.inf), left).otherwise(F.lit(np.inf).__div__(left))) return numpy_column_op(truediv)(self, other) def __mod__(self, other): def mod(left, right): return ((left % right) + right) % right return column_op(mod)(self, other) def __radd__(self, other): # Handle 'literal' + df['col'] if isinstance(self.spark.data_type, StringType) and isinstance( other, str): return self._with_new_scol( F.concat(F.lit(other), self.spark.column)) else: return column_op(Column.__radd__)(self, other) def __rsub__(self, other): if isinstance(self.spark.data_type, TimestampType): # Note that timestamp subtraction casts arguments to integer. This is to mimic pandas's # behaviors. pandas returns 'timedelta64[ns]' from 'datetime64[ns]'s subtraction. msg = ( "Note that there is a behavior difference of timestamp subtraction. " "The timestamp subtraction returns an integer in seconds, " "whereas pandas returns 'timedelta64[ns]'.") if isinstance(other, datetime.datetime): warnings.warn(msg, UserWarning) return -(self.astype("bigint") - F.lit(other).cast(as_spark_type("bigint"))) else: raise TypeError( "datetime subtraction can only be applied to datetime series." ) elif isinstance(self.spark.data_type, DateType): # Note that date subtraction casts arguments to integer. This is to mimic pandas's # behaviors. pandas returns 'timedelta64[ns]' in days from date's subtraction. msg = ( "Note that there is a behavior difference of date subtraction. " "The date subtraction returns an integer in days, " "whereas pandas returns 'timedelta64[ns]'.") if isinstance(other, datetime.date) and not isinstance( other, datetime.datetime): warnings.warn(msg, UserWarning) return -column_op(F.datediff)(self, F.lit(other)).astype("bigint") else: raise TypeError( "date subtraction can only be applied to date series.") return column_op(Column.__rsub__)(self, other) __rmul__ = column_op(Column.__rmul__) def __rtruediv__(self, other): def rtruediv(left, right): return F.when(left == 0, F.lit(np.inf).__div__(right)).otherwise( F.lit(right).__truediv__(left)) return numpy_column_op(rtruediv)(self, other) def __floordiv__(self, other): """ __floordiv__ has different behaviour between pandas and PySpark for several cases. 1. When divide np.inf by zero, PySpark returns null whereas pandas returns np.inf 2. When divide positive number by zero, PySpark returns null whereas pandas returns np.inf 3. When divide -np.inf by zero, PySpark returns null whereas pandas returns -np.inf 4. When divide negative number by zero, PySpark returns null whereas pandas returns -np.inf +-------------------------------------------+ | dividend (divisor: 0) | PySpark | pandas | |-----------------------|---------|---------| | np.inf | null | np.inf | | -np.inf | null | -np.inf | | 10 | null | np.inf | | -10 | null | -np.inf | +-----------------------|---------|---------+ """ def floordiv(left, right): return F.when(F.lit(right is np.nan), np.nan).otherwise( F.when( F.lit(right != 0) | F.lit(right).isNull(), F.floor(left.__div__(right))).otherwise( F.when( F.lit(left == np.inf) | F.lit(left == -np.inf), left).otherwise(F.lit(np.inf).__div__(left)))) return numpy_column_op(floordiv)(self, other) def __rfloordiv__(self, other): def rfloordiv(left, right): return F.when(F.lit(left == 0), F.lit(np.inf).__div__(right)).otherwise( F.when(F.lit(left) == np.nan, np.nan).otherwise( F.floor(F.lit(right).__div__(left)))) return numpy_column_op(rfloordiv)(self, other) def __rmod__(self, other): def rmod(left, right): return ((right % left) + left) % left return column_op(rmod)(self, other) __pow__ = column_op(Column.__pow__) __rpow__ = column_op(Column.__rpow__) __abs__ = column_op(F.abs) # comparison operators __eq__ = column_op(Column.__eq__) __ne__ = column_op(Column.__ne__) __lt__ = column_op(Column.__lt__) __le__ = column_op(Column.__le__) __ge__ = column_op(Column.__ge__) __gt__ = column_op(Column.__gt__) # `and`, `or`, `not` cannot be overloaded in Python, # so use bitwise operators as boolean operators __and__ = column_op(Column.__and__) __or__ = column_op(Column.__or__) __invert__ = column_op(Column.__invert__) __rand__ = column_op(Column.__rand__) __ror__ = column_op(Column.__ror__) # NDArray Compat def __array_ufunc__(self, ufunc: Callable, method: str, *inputs: Any, **kwargs: Any): # Try dunder methods first. result = numpy_compat.maybe_dispatch_ufunc_to_dunder_op( self, ufunc, method, *inputs, **kwargs) # After that, we try with PySpark APIs. if result is NotImplemented: result = numpy_compat.maybe_dispatch_ufunc_to_spark_func( self, ufunc, method, *inputs, **kwargs) if result is not NotImplemented: return result else: # TODO: support more APIs? raise NotImplementedError( "Koalas objects currently do not support %s." % ufunc) @property def dtype(self): """Return the dtype object of the underlying data. Examples -------- >>> s = ks.Series([1, 2, 3]) >>> s.dtype dtype('int64') >>> s = ks.Series(list('abc')) >>> s.dtype dtype('O') >>> s = ks.Series(pd.date_range('20130101', periods=3)) >>> s.dtype dtype('<M8[ns]') >>> s.rename("a").to_frame().set_index("a").index.dtype dtype('<M8[ns]') """ return spark_type_to_pandas_dtype(self.spark.data_type) @property def empty(self): """ Returns true if the current object is empty. Otherwise, returns false. >>> ks.range(10).id.empty False >>> ks.range(0).id.empty True >>> ks.DataFrame({}, index=list('abc')).index.empty False """ return self._internal.resolved_copy.spark_frame.rdd.isEmpty() @property def hasnans(self): """ Return True if it has any missing values. Otherwise, it returns False. >>> ks.DataFrame({}, index=list('abc')).index.hasnans False >>> ks.Series(['a', None]).hasnans True >>> ks.Series([1.0, 2.0, np.nan]).hasnans True >>> ks.Series([1, 2, 3]).hasnans False >>> (ks.Series([1.0, 2.0, np.nan]) + 1).hasnans True >>> ks.Series([1, 2, 3]).rename("a").to_frame().set_index("a").index.hasnans False """ sdf = self._internal.spark_frame scol = self.spark.column if isinstance(self.spark.data_type, (DoubleType, FloatType)): return sdf.select(F.max(scol.isNull() | F.isnan(scol))).collect()[0][0] else: return sdf.select(F.max(scol.isNull())).collect()[0][0] @property def is_monotonic(self): """ Return boolean if values in the object are monotonically increasing. .. note:: the current implementation of is_monotonic requires to shuffle and aggregate multiple times to check the order locally and globally, which is potentially expensive. In case of multi-index, all data are transferred to single node which can easily cause out-of-memory error currently. Returns ------- is_monotonic : boolean Examples -------- >>> ser = ks.Series(['1/1/2018', '3/1/2018', '4/1/2018']) >>> ser.is_monotonic True >>> df = ks.DataFrame({'dates': [None, '1/1/2018', '2/1/2018', '3/1/2018']}) >>> df.dates.is_monotonic False >>> df.index.is_monotonic True >>> ser = ks.Series([1]) >>> ser.is_monotonic True >>> ser = ks.Series([]) >>> ser.is_monotonic True >>> ser.rename("a").to_frame().set_index("a").index.is_monotonic True >>> ser = ks.Series([5, 4, 3, 2, 1], index=[1, 2, 3, 4, 5]) >>> ser.is_monotonic False >>> ser.index.is_monotonic True Support for MultiIndex >>> midx = ks.MultiIndex.from_tuples( ... [('x', 'a'), ('x', 'b'), ('y', 'c'), ('y', 'd'), ('z', 'e')]) >>> midx # doctest: +SKIP MultiIndex([('x', 'a'), ('x', 'b'), ('y', 'c'), ('y', 'd'), ('z', 'e')], ) >>> midx.is_monotonic True >>> midx = ks.MultiIndex.from_tuples( ... [('z', 'a'), ('z', 'b'), ('y', 'c'), ('y', 'd'), ('x', 'e')]) >>> midx # doctest: +SKIP MultiIndex([('z', 'a'), ('z', 'b'), ('y', 'c'), ('y', 'd'), ('x', 'e')], ) >>> midx.is_monotonic False """ return self._is_monotonic("increasing") is_monotonic_increasing = is_monotonic @property def is_monotonic_decreasing(self): """ Return boolean if values in the object are monotonically decreasing. .. note:: the current implementation of is_monotonic_decreasing requires to shuffle and aggregate multiple times to check the order locally and globally, which is potentially expensive. In case of multi-index, all data are transferred to single node which can easily cause out-of-memory error currently. Returns ------- is_monotonic : boolean Examples -------- >>> ser = ks.Series(['4/1/2018', '3/1/2018', '1/1/2018']) >>> ser.is_monotonic_decreasing True >>> df = ks.DataFrame({'dates': [None, '3/1/2018', '2/1/2018', '1/1/2018']}) >>> df.dates.is_monotonic_decreasing False >>> df.index.is_monotonic_decreasing False >>> ser = ks.Series([1]) >>> ser.is_monotonic_decreasing True >>> ser = ks.Series([]) >>> ser.is_monotonic_decreasing True >>> ser.rename("a").to_frame().set_index("a").index.is_monotonic_decreasing True >>> ser = ks.Series([5, 4, 3, 2, 1], index=[1, 2, 3, 4, 5]) >>> ser.is_monotonic_decreasing True >>> ser.index.is_monotonic_decreasing False Support for MultiIndex >>> midx = ks.MultiIndex.from_tuples( ... [('x', 'a'), ('x', 'b'), ('y', 'c'), ('y', 'd'), ('z', 'e')]) >>> midx # doctest: +SKIP MultiIndex([('x', 'a'), ('x', 'b'), ('y', 'c'), ('y', 'd'), ('z', 'e')], ) >>> midx.is_monotonic_decreasing False >>> midx = ks.MultiIndex.from_tuples( ... [('z', 'e'), ('z', 'd'), ('y', 'c'), ('y', 'b'), ('x', 'a')]) >>> midx # doctest: +SKIP MultiIndex([('z', 'a'), ('z', 'b'), ('y', 'c'), ('y', 'd'), ('x', 'e')], ) >>> midx.is_monotonic_decreasing True """ return self._is_monotonic("decreasing") def _is_locally_monotonic_spark_column(self, order): window = (Window.partitionBy(F.col("__partition_id")).orderBy( NATURAL_ORDER_COLUMN_NAME).rowsBetween(-1, -1)) if order == "increasing": return (F.col("__origin") >= F.lag(F.col("__origin"), 1).over( window)) & F.col("__origin").isNotNull() else: return (F.col("__origin") <= F.lag(F.col("__origin"), 1).over( window)) & F.col("__origin").isNotNull() def _is_monotonic(self, order): assert order in ("increasing", "decreasing") sdf = self._internal.spark_frame sdf = ( sdf.select( F.spark_partition_id().alias( "__partition_id" ), # Make sure we use the same partition id in the whole job. F.col(NATURAL_ORDER_COLUMN_NAME), self.spark.column.alias("__origin"), ).select( F.col("__partition_id"), F.col("__origin"), self._is_locally_monotonic_spark_column(order).alias( "__comparison_within_partition"), ).groupby(F.col("__partition_id")).agg( F.min(F.col("__origin")).alias("__partition_min"), F.max(F.col("__origin")).alias("__partition_max"), F.min( F.coalesce( F.col("__comparison_within_partition"), F.lit(True))).alias("__comparison_within_partition"), )) # Now we're windowing the aggregation results without partition specification. # The number of rows here will be as the same of partitions, which is expected # to be small. window = Window.orderBy(F.col("__partition_id")).rowsBetween(-1, -1) if order == "increasing": comparison_col = F.col("__partition_min") >= F.lag( F.col("__partition_max"), 1).over(window) else: comparison_col = F.col("__partition_min") <= F.lag( F.col("__partition_max"), 1).over(window) sdf = sdf.select( comparison_col.alias("__comparison_between_partitions"), F.col("__comparison_within_partition"), ) ret = sdf.select( F.min( F.coalesce(F.col("__comparison_between_partitions"), F.lit( True))) & F.min( F.coalesce(F.col("__comparison_within_partition"), F.lit( True)))).collect()[0][0] if ret is None: return True else: return ret @property def ndim(self): """ Return an int representing the number of array dimensions. Return 1 for Series / Index / MultiIndex. Examples -------- For Series >>> s = ks.Series([None, 1, 2, 3, 4], index=[4, 5, 2, 1, 8]) >>> s.ndim 1 For Index >>> s.index.ndim 1 For MultiIndex >>> midx = pd.MultiIndex([['lama', 'cow', 'falcon'], ... ['speed', 'weight', 'length']], ... [[0, 0, 0, 1, 1, 1, 2, 2, 2], ... [1, 1, 1, 1, 1, 2, 1, 2, 2]]) >>> s = ks.Series([45, 200, 1.2, 30, 250, 1.5, 320, 1, 0.3], index=midx) >>> s.index.ndim 1 """ return 1 def astype(self, dtype): """ Cast a Koalas object to a specified dtype ``dtype``. Parameters ---------- dtype : data type Use a numpy.dtype or Python type to cast entire pandas object to the same type. Returns ------- casted : same type as caller See Also -------- to_datetime : Convert argument to datetime. Examples -------- >>> ser = ks.Series([1, 2], dtype='int32') >>> ser 0 1 1 2 dtype: int32 >>> ser.astype('int64') 0 1 1 2 dtype: int64 >>> ser.rename("a").to_frame().set_index("a").index.astype('int64') Int64Index([1, 2], dtype='int64', name='a') """ spark_type = as_spark_type(dtype) if not spark_type: raise ValueError("Type {} not understood".format(dtype)) return self._with_new_scol(self.spark.column.cast(spark_type)) def isin(self, values): """ Check whether `values` are contained in Series. Return a boolean Series showing whether each element in the Series matches an element in the passed sequence of `values` exactly. Parameters ---------- values : list or set The sequence of values to test. Returns ------- isin : Series (bool dtype) Examples -------- >>> s = ks.Series(['lama', 'cow', 'lama', 'beetle', 'lama', ... 'hippo'], name='animal') >>> s.isin(['cow', 'lama']) 0 True 1 True 2 True 3 False 4 True 5 False Name: animal, dtype: bool Passing a single string as ``s.isin('lama')`` will raise an error. Use a list of one element instead: >>> s.isin(['lama']) 0 True 1 False 2 True 3 False 4 True 5 False Name: animal, dtype: bool >>> s.rename("a").to_frame().set_index("a").index.isin(['lama']) Index([True, False, True, False, True, False], dtype='object', name='a') """ if not is_list_like(values): raise TypeError("only list-like objects are allowed to be passed" " to isin(), you passed a [{values_type}]".format( values_type=type(values).__name__)) return self._with_new_scol(self.spark.column.isin(list(values))) def isnull(self): """ Detect existing (non-missing) values. Return a boolean same-sized object indicating if the values are NA. NA values, such as None or numpy.NaN, gets mapped to True values. Everything else gets mapped to False values. Characters such as empty strings '' or numpy.inf are not considered NA values (unless you set pandas.options.mode.use_inf_as_na = True). Returns ------- Series : Mask of bool values for each element in Series that indicates whether an element is not an NA value. Examples -------- >>> ser = ks.Series([5, 6, np.NaN]) >>> ser.isna() # doctest: +NORMALIZE_WHITESPACE 0 False 1 False 2 True dtype: bool >>> ser.rename("a").to_frame().set_index("a").index.isna() Index([False, False, True], dtype='object', name='a') """ from databricks.koalas.indexes import MultiIndex if isinstance(self, MultiIndex): raise NotImplementedError("isna is not defined for MultiIndex") if isinstance(self.spark.data_type, (FloatType, DoubleType)): return self._with_new_scol(self.spark.column.isNull() | F.isnan(self.spark.column)) else: return self._with_new_scol(self.spark.column.isNull()) isna = isnull def notnull(self): """ Detect existing (non-missing) values. Return a boolean same-sized object indicating if the values are not NA. Non-missing values get mapped to True. Characters such as empty strings '' or numpy.inf are not considered NA values (unless you set pandas.options.mode.use_inf_as_na = True). NA values, such as None or numpy.NaN, get mapped to False values. Returns ------- Series : Mask of bool values for each element in Series that indicates whether an element is not an NA value. Examples -------- Show which entries in a Series are not NA. >>> ser = ks.Series([5, 6, np.NaN]) >>> ser 0 5.0 1 6.0 2 NaN dtype: float64 >>> ser.notna() 0 True 1 True 2 False dtype: bool >>> ser.rename("a").to_frame().set_index("a").index.notna() Index([True, True, False], dtype='object', name='a') """ from databricks.koalas.indexes import MultiIndex if isinstance(self, MultiIndex): raise NotImplementedError("notna is not defined for MultiIndex") return (~self.isnull()).rename(self.name) notna = notnull # TODO: axis, skipna, and many arguments should be implemented. def all(self, axis: Union[int, str] = 0) -> bool: """ Return whether all elements are True. Returns True unless there at least one element within a series that is False or equivalent (e.g. zero or empty) Parameters ---------- axis : {0 or 'index'}, default 0 Indicate which axis or axes should be reduced. * 0 / 'index' : reduce the index, return a Series whose index is the original column labels. Examples -------- >>> ks.Series([True, True]).all() True >>> ks.Series([True, False]).all() False >>> ks.Series([0, 1]).all() False >>> ks.Series([1, 2, 3]).all() True >>> ks.Series([True, True, None]).all() True >>> ks.Series([True, False, None]).all() False >>> ks.Series([]).all() True >>> ks.Series([np.nan]).all() True >>> df = ks.Series([True, False, None]).rename("a").to_frame() >>> df.set_index("a").index.all() False """ axis = validate_axis(axis) if axis != 0: raise NotImplementedError( 'axis should be either 0 or "index" currently.') sdf = self._internal.spark_frame.select(self.spark.column) col = scol_for(sdf, sdf.columns[0]) # Note that we're ignoring `None`s here for now. # any and every was added as of Spark 3.0 # ret = sdf.select(F.expr("every(CAST(`%s` AS BOOLEAN))" % sdf.columns[0])).collect()[0][0] # Here we use min as its alternative: ret = sdf.select(F.min(F.coalesce(col.cast("boolean"), F.lit(True)))).collect()[0][0] if ret is None: return True else: return ret # TODO: axis, skipna, and many arguments should be implemented. def any(self, axis: Union[int, str] = 0) -> bool: """ Return whether any element is True. Returns False unless there at least one element within a series that is True or equivalent (e.g. non-zero or non-empty). Parameters ---------- axis : {0 or 'index'}, default 0 Indicate which axis or axes should be reduced. * 0 / 'index' : reduce the index, return a Series whose index is the original column labels. Examples -------- >>> ks.Series([False, False]).any() False >>> ks.Series([True, False]).any() True >>> ks.Series([0, 0]).any() False >>> ks.Series([0, 1, 2]).any() True >>> ks.Series([False, False, None]).any() False >>> ks.Series([True, False, None]).any() True >>> ks.Series([]).any() False >>> ks.Series([np.nan]).any() False >>> df = ks.Series([True, False, None]).rename("a").to_frame() >>> df.set_index("a").index.any() True """ axis = validate_axis(axis) if axis != 0: raise NotImplementedError( 'axis should be either 0 or "index" currently.') sdf = self._internal.spark_frame.select(self.spark.column) col = scol_for(sdf, sdf.columns[0]) # Note that we're ignoring `None`s here for now. # any and every was added as of Spark 3.0 # ret = sdf.select(F.expr("any(CAST(`%s` AS BOOLEAN))" % sdf.columns[0])).collect()[0][0] # Here we use max as its alternative: ret = sdf.select(F.max(F.coalesce(col.cast("boolean"), F.lit(False)))).collect()[0][0] if ret is None: return False else: return ret # TODO: add frep and axis parameter def shift(self, periods=1, fill_value=None): """ Shift Series/Index by desired number of periods. .. note:: the current implementation of shift uses Spark's Window without specifying partition specification. This leads to move all data into single partition in single machine and could cause serious performance degradation. Avoid this method against very large dataset. Parameters ---------- periods : int Number of periods to shift. Can be positive or negative. fill_value : object, optional The scalar value to use for newly introduced missing values. The default depends on the dtype of self. For numeric data, np.nan is used. Returns ------- Copy of input Series/Index, shifted. Examples -------- >>> df = ks.DataFrame({'Col1': [10, 20, 15, 30, 45], ... 'Col2': [13, 23, 18, 33, 48], ... 'Col3': [17, 27, 22, 37, 52]}, ... columns=['Col1', 'Col2', 'Col3']) >>> df.Col1.shift(periods=3) 0 NaN 1 NaN 2 NaN 3 10.0 4 20.0 Name: Col1, dtype: float64 >>> df.Col2.shift(periods=3, fill_value=0) 0 0 1 0 2 0 3 13 4 23 Name: Col2, dtype: int64 >>> df.index.shift(periods=3, fill_value=0) Int64Index([0, 0, 0, 0, 1], dtype='int64') """ return self._shift(periods, fill_value) def _shift(self, periods, fill_value, part_cols=()): if not isinstance(periods, int): raise ValueError("periods should be an int; however, got [%s]" % type(periods)) col = self.spark.column window = (Window.partitionBy( *part_cols).orderBy(NATURAL_ORDER_COLUMN_NAME).rowsBetween( -periods, -periods)) lag_col = F.lag(col, periods).over(window) col = F.when(lag_col.isNull() | F.isnan(lag_col), fill_value).otherwise(lag_col) return self._with_new_scol(col) # TODO: Update Documentation for Bins Parameter when its supported def value_counts(self, normalize=False, sort=True, ascending=False, bins=None, dropna=True): """ Return a Series containing counts of unique values. The resulting object will be in descending order so that the first element is the most frequently-occurring element. Excludes NA values by default. Parameters ---------- normalize : boolean, default False If True then the object returned will contain the relative frequencies of the unique values. sort : boolean, default True Sort by values. ascending : boolean, default False Sort in ascending order. bins : Not Yet Supported dropna : boolean, default True Don't include counts of NaN. Returns ------- counts : Series See Also -------- Series.count: Number of non-NA elements in a Series. Examples -------- For Series >>> df = ks.DataFrame({'x':[0, 0, 1, 1, 1, np.nan]}) >>> df.x.value_counts() # doctest: +NORMALIZE_WHITESPACE 1.0 3 0.0 2 Name: x, dtype: int64 With `normalize` set to `True`, returns the relative frequency by dividing all values by the sum of values. >>> df.x.value_counts(normalize=True) # doctest: +NORMALIZE_WHITESPACE 1.0 0.6 0.0 0.4 Name: x, dtype: float64 **dropna** With `dropna` set to `False` we can also see NaN index values. >>> df.x.value_counts(dropna=False) # doctest: +NORMALIZE_WHITESPACE 1.0 3 0.0 2 NaN 1 Name: x, dtype: int64 For Index >>> idx = ks.Index([3, 1, 2, 3, 4, np.nan]) >>> idx Float64Index([3.0, 1.0, 2.0, 3.0, 4.0, nan], dtype='float64') >>> idx.value_counts().sort_index() 1.0 1 2.0 1 3.0 2 4.0 1 dtype: int64 **sort** With `sort` set to `False`, the result wouldn't be sorted by number of count. >>> idx.value_counts(sort=True).sort_index() 1.0 1 2.0 1 3.0 2 4.0 1 dtype: int64 **normalize** With `normalize` set to `True`, returns the relative frequency by dividing all values by the sum of values. >>> idx.value_counts(normalize=True).sort_index() 1.0 0.2 2.0 0.2 3.0 0.4 4.0 0.2 dtype: float64 **dropna** With `dropna` set to `False` we can also see NaN index values. >>> idx.value_counts(dropna=False).sort_index() # doctest: +SKIP 1.0 1 2.0 1 3.0 2 4.0 1 NaN 1 dtype: int64 For MultiIndex. >>> midx = pd.MultiIndex([['lama', 'cow', 'falcon'], ... ['speed', 'weight', 'length']], ... [[0, 0, 0, 1, 1, 1, 2, 2, 2], ... [1, 1, 1, 1, 1, 2, 1, 2, 2]]) >>> s = ks.Series([45, 200, 1.2, 30, 250, 1.5, 320, 1, 0.3], index=midx) >>> s.index # doctest: +SKIP MultiIndex([( 'lama', 'weight'), ( 'lama', 'weight'), ( 'lama', 'weight'), ( 'cow', 'weight'), ( 'cow', 'weight'), ( 'cow', 'length'), ('falcon', 'weight'), ('falcon', 'length'), ('falcon', 'length')], ) >>> s.index.value_counts().sort_index() (cow, length) 1 (cow, weight) 2 (falcon, length) 2 (falcon, weight) 1 (lama, weight) 3 dtype: int64 >>> s.index.value_counts(normalize=True).sort_index() (cow, length) 0.111111 (cow, weight) 0.222222 (falcon, length) 0.222222 (falcon, weight) 0.111111 (lama, weight) 0.333333 dtype: float64 If Index has name, keep the name up. >>> idx = ks.Index([0, 0, 0, 1, 1, 2, 3], name='koalas') >>> idx.value_counts().sort_index() 0 3 1 2 2 1 3 1 Name: koalas, dtype: int64 """ from databricks.koalas.series import first_series if bins is not None: raise NotImplementedError( "value_counts currently does not support bins") if dropna: sdf_dropna = self._internal.spark_frame.select( self.spark.column).dropna() else: sdf_dropna = self._internal.spark_frame.select(self.spark.column) index_name = SPARK_DEFAULT_INDEX_NAME column_name = self._internal.data_spark_column_names[0] sdf = sdf_dropna.groupby( scol_for(sdf_dropna, column_name).alias(index_name)).count() if sort: if ascending: sdf = sdf.orderBy(F.col("count")) else: sdf = sdf.orderBy(F.col("count").desc()) if normalize: sum = sdf_dropna.count() sdf = sdf.withColumn("count", F.col("count") / F.lit(sum)) internal = InternalFrame( spark_frame=sdf, index_map=OrderedDict({index_name: None}), column_labels=self._internal.column_labels, data_spark_columns=[scol_for(sdf, "count")], column_label_names=self._internal.column_label_names, ) return first_series(DataFrame(internal)) def nunique(self, dropna: bool = True, approx: bool = False, rsd: float = 0.05) -> int: """ Return number of unique elements in the object. Excludes NA values by default. Parameters ---------- dropna : bool, default True Don’t include NaN in the count. approx: bool, default False If False, will use the exact algorithm and return the exact number of unique. If True, it uses the HyperLogLog approximate algorithm, which is significantly faster for large amount of data. Note: This parameter is specific to Koalas and is not found in pandas. rsd: float, default 0.05 Maximum estimation error allowed in the HyperLogLog algorithm. Note: Just like ``approx`` this parameter is specific to Koalas. Returns ------- int See Also -------- DataFrame.nunique: Method nunique for DataFrame. Series.count: Count non-NA/null observations in the Series. Examples -------- >>> ks.Series([1, 2, 3, np.nan]).nunique() 3 >>> ks.Series([1, 2, 3, np.nan]).nunique(dropna=False) 4 On big data, we recommend using the approximate algorithm to speed up this function. The result will be very close to the exact unique count. >>> ks.Series([1, 2, 3, np.nan]).nunique(approx=True) 3 >>> idx = ks.Index([1, 1, 2, None]) >>> idx Float64Index([1.0, 1.0, 2.0, nan], dtype='float64') >>> idx.nunique() 2 >>> idx.nunique(dropna=False) 3 """ res = self._internal.spark_frame.select( [self._nunique(dropna, approx, rsd)]) return res.collect()[0][0] def _nunique(self, dropna=True, approx=False, rsd=0.05): colname = self._internal.data_spark_column_names[0] count_fn = partial(F.approx_count_distinct, rsd=rsd) if approx else F.countDistinct if dropna: return count_fn(self.spark.column).alias(colname) else: return (count_fn(self.spark.column) + F.when( F.count(F.when(self.spark.column.isNull(), 1).otherwise(None)) >= 1, 1).otherwise(0)).alias(colname) def take(self, indices): """ Return the elements in the given *positional* indices along an axis. This means that we are not indexing according to actual values in the index attribute of the object. We are indexing according to the actual position of the element in the object. Parameters ---------- indices : array-like An array of ints indicating which positions to take. Returns ------- taken : same type as caller An array-like containing the elements taken from the object. See Also -------- DataFrame.loc : Select a subset of a DataFrame by labels. DataFrame.iloc : Select a subset of a DataFrame by positions. numpy.take : Take elements from an array along an axis. Examples -------- Series >>> kser = ks.Series([100, 200, 300, 400, 500]) >>> kser 0 100 1 200 2 300 3 400 4 500 dtype: int64 >>> kser.take([0, 2, 4]).sort_index() 0 100 2 300 4 500 dtype: int64 Index >>> kidx = ks.Index([100, 200, 300, 400, 500]) >>> kidx Int64Index([100, 200, 300, 400, 500], dtype='int64') >>> kidx.take([0, 2, 4]).sort_values() Int64Index([100, 300, 500], dtype='int64') MultiIndex >>> kmidx = ks.MultiIndex.from_tuples([("x", "a"), ("x", "b"), ("x", "c")]) >>> kmidx # doctest: +SKIP MultiIndex([('x', 'a'), ('x', 'b'), ('x', 'c')], ) >>> kmidx.take([0, 2]) # doctest: +SKIP MultiIndex([('x', 'a'), ('x', 'c')], ) """ if not is_list_like(indices) or isinstance(indices, (dict, set)): raise ValueError( "`indices` must be a list-like except dict or set") if isinstance(self, ks.Series): result = self.iloc[indices] elif isinstance(self, ks.Index): result = self._kdf.iloc[indices].index return result
from .base import output_notebook, output_file, plot_grid, show, embedded_html from .plot import plot, FramePlotMethods from .geoplot import geoplot from bokeh.layouts import column, row, layout from bokeh.io import save import warnings __version__ = "0.4.2" # Register plot_bokeh accessor for Pandas DataFrames and Series: import pandas as pd from pandas.core.accessor import CachedAccessor plot_bokeh = CachedAccessor("plot_bokeh", FramePlotMethods) pd.DataFrame.plot_bokeh = plot_bokeh pd.Series.plot_bokeh = plot # Add pandas_bokeh as plotting backend option (available for pandas >= 0.25) if pd.__version__ >= "0.25": pd.DataFrame.plot._all_kinds = ( "line", "point", "step", "scatter", "bar", "barh", "area", "pie", "hist",
def bar(self, title='bar', **kwds): return self(kind='bar', title=title, **kwds) def line(self, title='line', **kwds): return self(kind='line', title='title', **kwds) def box(self, title='box', **kwds): return self(kind='box', title=title, **kwds) def pie(self, title='pie', y=None, color=None, radius=None, center=None, rosetype=None, label_opts=None, **kwds): if color is not None: kwds.update({'color': color}) if radius is not None: kwds.update({'radius': radius}) if center is not None: kwds.update({'center': center}) if rosetype is not None: kwds.update({'rosetype': rosetype}) if label_opts is not None: kwds.update({'label_opts': label_opts}) return self(kind='pie', y=y, title=title, **kwds) def scatter(self, x, y, category_col=None, category_name=None, title='scatter'): return self(kind='scatter', x=x, y=y, category_col=category_col, category_name=category_name, title=title) def scatter3d(self, x, y, z, category_col=None, category_name=None, title='scatter3d'): return self(kind='scatter3d', x=x, y=y, z=z, category_col=category_col, category_name=category_name, title=title) pandas.Series.eplot = CachedAccessor("eplot", EchartsSeriesPlotMethods) pandas.DataFrame.eplot = CachedAccessor("eplot", EchartsFramePlotMethods)
scatter_fig.add_xaxis(x_val) scatter_fig.add_yaxis(y, y_val) else: for cat, d in self._parent.groupby(category_col): scatter_fig.add_xaxis(d[x].values.tolist()) scatter_fig.add_yaxis(cat, d[y].values.tolist()) config = self._combine_options(config, show_label=False, **kwargs) scatter_fig = self._set_options(scatter_fig, config) return self._render(scatter_fig, path) def scatter3d(self, x, y, z, category_col=None, title=None, category_name=None, **kwargs) -> Optional[HTML]: data = self._parent scatter3d_fig = pyecharts.charts.Scatter3D(title) if category_col is None: scatter3d_fig.add(category_name, data[[x, y, z]].values, **kwargs) else: for cat, d in data.groupby(category_col): scatter3d_fig.add(cat, d[[x, y, z]].values, **kwargs) return scatter3d_fig pd.Series.eplot = CachedAccessor("eplot", EchartsBasePlotMethods) pd.DataFrame.eplot = CachedAccessor("eplot", EchartsBasePlotMethods)
def __call__(self, *args, **kwargs): raise NotImplementedError class FramePlotMethods(BasePlotMethods): """FramePlotMethods.""" @property def df(self): dataframe = self._parent # Convert PySpark Dataframe to Pandas Dataframe: if hasattr(dataframe, "toPandas"): dataframe = dataframe.toPandas() return dataframe def __call__(self, *args, **kwargs): return bokeh.plot(self.df, *args, **kwargs) __call__.__doc__ = bokeh.plot.__doc__ def line(self, *args, **kwargs): self(kind='line', *args, **kwargs) ss_plot = CachedAccessor("ss_plot", FramePlotMethods) pd.DataFrame.ss_plot = ss_plot pd.Series.ss_plot = ss_plot
- Every row represents a single period of time - Each column holds the value for a particular category - The index contains the time component (optional) """ # Register animated_plot accessor for Pandas DataFrames and Series: import pandas as pd from pandas.core.accessor import CachedAccessor from .plotting import AnimatedAccessor, plot, animate_multiple_plots from .base import load_dataset version = "0.2.4" plot_animated = CachedAccessor("plot_animated", AnimatedAccessor) pd.DataFrame.plot_animated = plot_animated pd.Series.plot_animated = plot_animated # Define plot_animated method for GeoPandas and Series: try: import geopandas as gpd from .geoplotting import geoplot gpd.GeoDataFrame.plot_animated = geoplot gpd.GeoSeries.plot_animated = geoplot except ImportError: pass
class RbDataFrame(pd.DataFrame): plot = CachedAccessor('plot', plotting.RbPlotAccessor) @property def _constructor(self): return RbDataFrame def add_means(self): def _valid_mean(self, key0): a = self[(key0, 'valid_csl')] b = self[(key0, 'valid_psl')] if a is True and b is True: return pd.Series([True], index=['valid_mean']) elif a is False or b is False: return pd.Series([False], index=['valid_mean']) else: return pd.Series([None], index=['valid_mean']) for key0 in self.columns.levels[0]: self[(key0, 'cpu_mean')] = self[[(key0, 'cpu_csl'), (key0, 'cpu_psl')]].mean(axis=1) self[(key0, 'gc_mean')] = self[[(key0, 'gc_csl'), (key0, 'gc_psl')]].mean(axis=1) self[(key0, 'valid_mean')] = self.apply(_valid_mean, args=(key0, ), axis=1) return self def select(self, selectors): """ Select columns by substring match in any level. """ if type(selectors) == str: selectors = [selectors] selection = [] for column in self.columns: for selector in selectors: if selector in column[0] or selector in column[1]: selection.append(column) break return self[selection] def fast(self, max: float = 0.5): """ Select rows where all CPU times are < max. Note that fast() and slow() complement each other. """ level0 = list(self.columns.levels[0]) query = True for index0 in level0: cpu_csl = self[(index0, 'cpu_csl')] cpu_psl = self[(index0, 'cpu_psl')] query &= (cpu_csl < max) & (cpu_psl < max) return self[query] def slow(self, min: float = 0.5): """ Select rows where at least one CPU time is >= min. Note that fast() and slow() complement each other. """ level0 = list(self.columns.levels[0]) query = False for index0 in level0: cpu_csl = self[(index0, 'cpu_csl')] cpu_psl = self[(index0, 'cpu_psl')] query |= (min <= cpu_csl) | (min <= cpu_psl) return self[query]