示例#1
0
    def max(self):
        """
        Return the maximum value of the Index.

        Returns
        -------
        scalar
            Maximum value.

        See Also
        --------
        Index.min : Return the minimum value in an Index.
        Series.max : Return the maximum value in a Series.
        DataFrame.max : Return the maximum values in a DataFrame.

        Examples
        --------
        >>> idx = pd.Index([3, 2, 1])
        >>> idx.max()
        3

        >>> idx = pd.Index(['c', 'b', 'a'])
        >>> idx.max()
        'c'

        For a MultiIndex, the maximum is determined lexicographically.

        >>> idx = pd.MultiIndex.from_product([('a', 'b'), (2, 1)])
        >>> idx.max()
        ('b', 2)
        """
        return nanops.nanmax(self.values)
示例#2
0
文件: base.py 项目: MasonGallo/pandas
    def max(self):
        """
        Return the maximum value of the Index.

        Returns
        -------
        scalar
            Maximum value.

        See Also
        --------
        Index.min : Return the minimum value in an Index.
        Series.max : Return the maximum value in a Series.
        DataFrame.max : Return the maximum values in a DataFrame.

        Examples
        --------
        >>> idx = pd.Index([3, 2, 1])
        >>> idx.max()
        3

        >>> idx = pd.Index(['c', 'b', 'a'])
        >>> idx.max()
        'c'

        For a MultiIndex, the maximum is determined lexicographically.

        >>> idx = pd.MultiIndex.from_product([('a', 'b'), (2, 1)])
        >>> idx.max()
        ('b', 2)
        """
        return nanops.nanmax(self.values)
示例#3
0
 def max(self, *, axis=None, skipna: bool = True, **kwargs) -> Scalar:
     nv.validate_max((), kwargs)
     result = nanops.nanmax(values=self._ndarray,
                            axis=axis,
                            mask=self.isna(),
                            skipna=skipna)
     return self._wrap_reduction_result(axis, result)
示例#4
0
    def max(self, axis=None, skipna: bool = True, *args, **kwargs):
        """
        Return the maximum value of the Index.

        Parameters
        ----------
        axis : int, optional
            For compatibility with NumPy. Only 0 or None are allowed.
        skipna : bool, default True
            Exclude NA/null values when showing the result.
        *args, **kwargs
            Additional arguments and keywords for compatibility with NumPy.

        Returns
        -------
        scalar
            Maximum value.

        See Also
        --------
        Index.min : Return the minimum value in an Index.
        Series.max : Return the maximum value in a Series.
        DataFrame.max : Return the maximum values in a DataFrame.

        Examples
        --------
        >>> idx = pd.Index([3, 2, 1])
        >>> idx.max()
        3

        >>> idx = pd.Index(['c', 'b', 'a'])
        >>> idx.max()
        'c'

        For a MultiIndex, the maximum is determined lexicographically.

        >>> idx = pd.MultiIndex.from_product([('a', 'b'), (2, 1)])
        >>> idx.max()
        ('b', 2)
        """
        nv.validate_minmax_axis(axis)
        nv.validate_max(args, kwargs)
        return nanops.nanmax(self._values, skipna=skipna)
示例#5
0
    def max(self, axis=None, skipna=True, *args, **kwargs):
        """
        Return the maximum value of the Index.

        Parameters
        ----------
        axis : int, optional
            For compatibility with NumPy. Only 0 or None are allowed.
        skipna : bool, default True

        Returns
        -------
        scalar
            Maximum value.

        See Also
        --------
        Index.min : Return the minimum value in an Index.
        Series.max : Return the maximum value in a Series.
        DataFrame.max : Return the maximum values in a DataFrame.

        Examples
        --------
        >>> idx = pd.Index([3, 2, 1])
        >>> idx.max()
        3

        >>> idx = pd.Index(['c', 'b', 'a'])
        >>> idx.max()
        'c'

        For a MultiIndex, the maximum is determined lexicographically.

        >>> idx = pd.MultiIndex.from_product([('a', 'b'), (2, 1)])
        >>> idx.max()
        ('b', 2)
        """
        nv.validate_minmax_axis(axis)
        nv.validate_max(args, kwargs)
        return nanops.nanmax(self._values, skipna=skipna)
示例#6
0
文件: tile.py 项目: manova/pandas
def cut(x, bins, right=True, labels=None, retbins=False, precision=3,
        include_lowest=False):
    """
    Return indices of half-open bins to which each value of `x` belongs.

    Parameters
    ----------
    x : array-like
        Input array to be binned. It has to be 1-dimensional.
    bins : int or sequence of scalars
        If `bins` is an int, it defines the number of equal-width bins in the
        range of `x`. However, in this case, the range of `x` is extended
        by .1% on each side to include the min or max values of `x`. If
        `bins` is a sequence it defines the bin edges allowing for
        non-uniform bin width. No extension of the range of `x` is done in
        this case.
    right : bool, optional
        Indicates whether the bins include the rightmost edge or not. If
        right == True (the default), then the bins [1,2,3,4] indicate
        (1,2], (2,3], (3,4].
    labels : array or boolean, default None
        Labels to use for bin edges, or False to return integer bin labels
    retbins : bool, optional
        Whether to return the bins or not. Can be useful if bins is given
        as a scalar.

    Returns
    -------
    out : Categorical or array of integers if labels is False
    bins : ndarray of floats
        Returned only if `retbins` is True.

    Notes
    -----
    The `cut` function can be useful for going from a continuous variable to
    a categorical variable. For example, `cut` could convert ages to groups
    of age ranges.

    Any NA values will be NA in the result.  Out of bounds values will be NA in
    the resulting Categorical object


    Examples
    --------
    >>> cut(np.array([.2, 1.4, 2.5, 6.2, 9.7, 2.1]), 3, retbins=True)
    (array([(0.191, 3.367], (0.191, 3.367], (0.191, 3.367], (3.367, 6.533],
           (6.533, 9.7], (0.191, 3.367]], dtype=object),
     array([ 0.1905    ,  3.36666667,  6.53333333,  9.7       ]))
    >>> cut(np.ones(5), 4, labels=False)
    array([2, 2, 2, 2, 2])
    """
    #NOTE: this binning code is changed a bit from histogram for var(x) == 0
    if not np.iterable(bins):
        if np.isscalar(bins) and bins < 1:
            raise ValueError("`bins` should be a positive integer.")
        try: # for array-like
            sz = x.size
        except AttributeError:
            x = np.asarray(x)
            sz = x.size
        if sz == 0:
            # handle empty arrays. Can't determine range, so use 0-1.
            rng = (0, 1)
        else:
            rng = (nanops.nanmin(x), nanops.nanmax(x))
        mn, mx = [mi + 0.0 for mi in rng]

        if mn == mx: # adjust end points before binning
            mn -= .001 * mn
            mx += .001 * mx
            bins = np.linspace(mn, mx, bins+1, endpoint=True)
        else: # adjust end points after binning
            bins = np.linspace(mn, mx, bins+1, endpoint=True)
            adj = (mx - mn) * 0.001 # 0.1% of the range
            if right:
                bins[0] -= adj
            else:
                bins[-1] += adj

    else:
        bins = np.asarray(bins)
        if (np.diff(bins) < 0).any():
            raise ValueError('bins must increase monotonically.')

    return _bins_to_cuts(x, bins, right=right, labels=labels,
                         retbins=retbins, precision=precision,
                         include_lowest=include_lowest)
示例#7
0
def cut(
    x,
    bins,
    right: bool = True,
    labels=None,
    retbins: bool = False,
    precision: int = 3,
    include_lowest: bool = False,
    duplicates: str = "raise",
):
    """
    Bin values into discrete intervals.

    Use `cut` when you need to segment and sort data values into bins. This
    function is also useful for going from a continuous variable to a
    categorical variable. For example, `cut` could convert ages to groups of
    age ranges. Supports binning into an equal number of bins, or a
    pre-specified array of bins.

    Parameters
    ----------
    x : array-like
        The input array to be binned. Must be 1-dimensional.
    bins : int, sequence of scalars, or IntervalIndex
        The criteria to bin by.

        * int : Defines the number of equal-width bins in the range of `x`. The
          range of `x` is extended by .1% on each side to include the minimum
          and maximum values of `x`.
        * sequence of scalars : Defines the bin edges allowing for non-uniform
          width. No extension of the range of `x` is done.
        * IntervalIndex : Defines the exact bins to be used. Note that
          IntervalIndex for `bins` must be non-overlapping.

    right : bool, default True
        Indicates whether `bins` includes the rightmost edge or not. If
        ``right == True`` (the default), then the `bins` ``[1, 2, 3, 4]``
        indicate (1,2], (2,3], (3,4]. This argument is ignored when
        `bins` is an IntervalIndex.
    labels : array or False, default None
        Specifies the labels for the returned bins. Must be the same length as
        the resulting bins. If False, returns only integer indicators of the
        bins. This affects the type of the output container (see below).
        This argument is ignored when `bins` is an IntervalIndex. If True,
        raises an error.
    retbins : bool, default False
        Whether to return the bins or not. Useful when bins is provided
        as a scalar.
    precision : int, default 3
        The precision at which to store and display the bins labels.
    include_lowest : bool, default False
        Whether the first interval should be left-inclusive or not.
    duplicates : {default 'raise', 'drop'}, optional
        If bin edges are not unique, raise ValueError or drop non-uniques.

        .. versionadded:: 0.23.0

    Returns
    -------
    out : Categorical, Series, or ndarray
        An array-like object representing the respective bin for each value
        of `x`. The type depends on the value of `labels`.

        * True (default) : returns a Series for Series `x` or a
          Categorical for all other inputs. The values stored within
          are Interval dtype.

        * sequence of scalars : returns a Series for Series `x` or a
          Categorical for all other inputs. The values stored within
          are whatever the type in the sequence is.

        * False : returns an ndarray of integers.

    bins : numpy.ndarray or IntervalIndex.
        The computed or specified bins. Only returned when `retbins=True`.
        For scalar or sequence `bins`, this is an ndarray with the computed
        bins. If set `duplicates=drop`, `bins` will drop non-unique bin. For
        an IntervalIndex `bins`, this is equal to `bins`.

    See Also
    --------
    qcut : Discretize variable into equal-sized buckets based on rank
        or based on sample quantiles.
    Categorical : Array type for storing data that come from a
        fixed set of values.
    Series : One-dimensional array with axis labels (including time series).
    IntervalIndex : Immutable Index implementing an ordered, sliceable set.

    Notes
    -----
    Any NA values will be NA in the result. Out of bounds values will be NA in
    the resulting Series or Categorical object.

    Examples
    --------
    Discretize into three equal-sized bins.

    >>> pd.cut(np.array([1, 7, 5, 4, 6, 3]), 3)
    ... # doctest: +ELLIPSIS
    [(0.994, 3.0], (5.0, 7.0], (3.0, 5.0], (3.0, 5.0], (5.0, 7.0], ...
    Categories (3, interval[float64]): [(0.994, 3.0] < (3.0, 5.0] ...

    >>> pd.cut(np.array([1, 7, 5, 4, 6, 3]), 3, retbins=True)
    ... # doctest: +ELLIPSIS
    ([(0.994, 3.0], (5.0, 7.0], (3.0, 5.0], (3.0, 5.0], (5.0, 7.0], ...
    Categories (3, interval[float64]): [(0.994, 3.0] < (3.0, 5.0] ...
    array([0.994, 3.   , 5.   , 7.   ]))

    Discovers the same bins, but assign them specific labels. Notice that
    the returned Categorical's categories are `labels` and is ordered.

    >>> pd.cut(np.array([1, 7, 5, 4, 6, 3]),
    ...        3, labels=["bad", "medium", "good"])
    [bad, good, medium, medium, good, bad]
    Categories (3, object): [bad < medium < good]

    ``labels=False`` implies you just want the bins back.

    >>> pd.cut([0, 1, 1, 2], bins=4, labels=False)
    array([0, 1, 1, 3])

    Passing a Series as an input returns a Series with categorical dtype:

    >>> s = pd.Series(np.array([2, 4, 6, 8, 10]),
    ...               index=['a', 'b', 'c', 'd', 'e'])
    >>> pd.cut(s, 3)
    ... # doctest: +ELLIPSIS
    a    (1.992, 4.667]
    b    (1.992, 4.667]
    c    (4.667, 7.333]
    d     (7.333, 10.0]
    e     (7.333, 10.0]
    dtype: category
    Categories (3, interval[float64]): [(1.992, 4.667] < (4.667, ...

    Passing a Series as an input returns a Series with mapping value.
    It is used to map numerically to intervals based on bins.

    >>> s = pd.Series(np.array([2, 4, 6, 8, 10]),
    ...               index=['a', 'b', 'c', 'd', 'e'])
    >>> pd.cut(s, [0, 2, 4, 6, 8, 10], labels=False, retbins=True, right=False)
    ... # doctest: +ELLIPSIS
    (a    0.0
     b    1.0
     c    2.0
     d    3.0
     e    4.0
     dtype: float64, array([0, 2, 4, 6, 8]))

    Use `drop` optional when bins is not unique

    >>> pd.cut(s, [0, 2, 4, 6, 10, 10], labels=False, retbins=True,
    ...        right=False, duplicates='drop')
    ... # doctest: +ELLIPSIS
    (a    0.0
     b    1.0
     c    2.0
     d    3.0
     e    3.0
     dtype: float64, array([0, 2, 4, 6, 8]))

    Passing an IntervalIndex for `bins` results in those categories exactly.
    Notice that values not covered by the IntervalIndex are set to NaN. 0
    is to the left of the first bin (which is closed on the right), and 1.5
    falls between two bins.

    >>> bins = pd.IntervalIndex.from_tuples([(0, 1), (2, 3), (4, 5)])
    >>> pd.cut([0, 0.5, 1.5, 2.5, 4.5], bins)
    [NaN, (0, 1], NaN, (2, 3], (4, 5]]
    Categories (3, interval[int64]): [(0, 1] < (2, 3] < (4, 5]]
    """
    # NOTE: this binning code is changed a bit from histogram for var(x) == 0

    # for handling the cut for datetime and timedelta objects
    original = x
    x = _preprocess_for_cut(x)
    x, dtype = _coerce_to_type(x)

    if not np.iterable(bins):
        if is_scalar(bins) and bins < 1:
            raise ValueError("`bins` should be a positive integer.")

        try:  # for array-like
            sz = x.size
        except AttributeError:
            x = np.asarray(x)
            sz = x.size

        if sz == 0:
            raise ValueError("Cannot cut empty array")

        rng = (nanops.nanmin(x), nanops.nanmax(x))
        mn, mx = [mi + 0.0 for mi in rng]

        if np.isinf(mn) or np.isinf(mx):
            # GH 24314
            raise ValueError(
                "cannot specify integer `bins` when input data contains infinity"
            )
        elif mn == mx:  # adjust end points before binning
            mn -= 0.001 * abs(mn) if mn != 0 else 0.001
            mx += 0.001 * abs(mx) if mx != 0 else 0.001
            bins = np.linspace(mn, mx, bins + 1, endpoint=True)
        else:  # adjust end points after binning
            bins = np.linspace(mn, mx, bins + 1, endpoint=True)
            adj = (mx - mn) * 0.001  # 0.1% of the range
            if right:
                bins[0] -= adj
            else:
                bins[-1] += adj

    elif isinstance(bins, IntervalIndex):
        if bins.is_overlapping:
            raise ValueError("Overlapping IntervalIndex is not accepted.")

    else:
        if is_datetime64tz_dtype(bins):
            bins = np.asarray(bins, dtype=_NS_DTYPE)
        else:
            bins = np.asarray(bins)
        bins = _convert_bin_to_numeric_type(bins, dtype)

        # GH 26045: cast to float64 to avoid an overflow
        if (np.diff(bins.astype("float64")) < 0).any():
            raise ValueError("bins must increase monotonically.")

    fac, bins = _bins_to_cuts(
        x,
        bins,
        right=right,
        labels=labels,
        precision=precision,
        include_lowest=include_lowest,
        dtype=dtype,
        duplicates=duplicates,
    )

    return _postprocess_for_cut(fac, bins, retbins, dtype, original)
示例#8
0
def cut(x, bins, right=True, labels=None, retbins=False, precision=3,
        include_lowest=False):
    """
    Return indices of half-open bins to which each value of `x` belongs.

    Parameters
    ----------
    x : array-like
        Input array to be binned. It has to be 1-dimensional.
    bins : int, sequence of scalars, or IntervalIndex
        If `bins` is an int, it defines the number of equal-width bins in the
        range of `x`. However, in this case, the range of `x` is extended
        by .1% on each side to include the min or max values of `x`. If
        `bins` is a sequence it defines the bin edges allowing for
        non-uniform bin width. No extension of the range of `x` is done in
        this case.
    right : bool, optional
        Indicates whether the bins include the rightmost edge or not. If
        right == True (the default), then the bins [1,2,3,4] indicate
        (1,2], (2,3], (3,4].
    labels : array or boolean, default None
        Used as labels for the resulting bins. Must be of the same length as
        the resulting bins. If False, return only integer indicators of the
        bins.
    retbins : bool, optional
        Whether to return the bins or not. Can be useful if bins is given
        as a scalar.
    precision : int, optional
        The precision at which to store and display the bins labels
    include_lowest : bool, optional
        Whether the first interval should be left-inclusive or not.

    Returns
    -------
    out : Categorical or Series or array of integers if labels is False
        The return type (Categorical or Series) depends on the input: a Series
        of type category if input is a Series else Categorical. Bins are
        represented as categories when categorical data is returned.
    bins : ndarray of floats
        Returned only if `retbins` is True.

    Notes
    -----
    The `cut` function can be useful for going from a continuous variable to
    a categorical variable. For example, `cut` could convert ages to groups
    of age ranges.

    Any NA values will be NA in the result.  Out of bounds values will be NA in
    the resulting Categorical object


    Examples
    --------
    >>> pd.cut(np.array([.2, 1.4, 2.5, 6.2, 9.7, 2.1]), 3, retbins=True)
    ... # doctest: +ELLIPSIS
    ([(0.19, 3.367], (0.19, 3.367], (0.19, 3.367], (3.367, 6.533], ...
    Categories (3, interval[float64]): [(0.19, 3.367] < (3.367, 6.533] ...

    >>> pd.cut(np.array([.2, 1.4, 2.5, 6.2, 9.7, 2.1]),
    ...        3, labels=["good", "medium", "bad"])
    ... # doctest: +SKIP
    [good, good, good, medium, bad, good]
    Categories (3, object): [good < medium < bad]

    >>> pd.cut(np.ones(5), 4, labels=False)
    array([1, 1, 1, 1, 1])
    """
    # NOTE: this binning code is changed a bit from histogram for var(x) == 0

    # for handling the cut for datetime and timedelta objects
    x_is_series, series_index, name, x = _preprocess_for_cut(x)
    x, dtype = _coerce_to_type(x)

    if not np.iterable(bins):
        if is_scalar(bins) and bins < 1:
            raise ValueError("`bins` should be a positive integer.")

        try:  # for array-like
            sz = x.size
        except AttributeError:
            x = np.asarray(x)
            sz = x.size

        if sz == 0:
            raise ValueError('Cannot cut empty array')

        rng = (nanops.nanmin(x), nanops.nanmax(x))
        mn, mx = [mi + 0.0 for mi in rng]

        if mn == mx:  # adjust end points before binning
            mn -= .001 * abs(mn) if mn != 0 else .001
            mx += .001 * abs(mx) if mx != 0 else .001
            bins = np.linspace(mn, mx, bins + 1, endpoint=True)
        else:  # adjust end points after binning
            bins = np.linspace(mn, mx, bins + 1, endpoint=True)
            adj = (mx - mn) * 0.001  # 0.1% of the range
            if right:
                bins[0] -= adj
            else:
                bins[-1] += adj

    elif isinstance(bins, IntervalIndex):
        pass
    else:
        bins = np.asarray(bins)
        bins = _convert_bin_to_numeric_type(bins, dtype)
        if (np.diff(bins) < 0).any():
            raise ValueError('bins must increase monotonically.')

    fac, bins = _bins_to_cuts(x, bins, right=right, labels=labels,
                              precision=precision,
                              include_lowest=include_lowest,
                              dtype=dtype)

    return _postprocess_for_cut(fac, bins, retbins, x_is_series,
                                series_index, name)
示例#9
0
文件: tile.py 项目: thuske/pandas
def cut(x, bins, right=True, labels=None, retbins=False, precision=3):
    """
    Return indices of half-open bins to which each value of `x` belongs.

    Parameters
    ----------
    x : array-like
        Input array to be binned. It has to be 1-dimensional.
    bins : int or sequence of scalars
        If `bins` is an int, it defines the number of equal-width bins in the
        range of `x`. However, in this case, the range of `x` is extended
        by .1% on each side to include the min or max values of `x`. If
        `bins` is a sequence it defines the bin edges allowing for
        non-uniform bin width. No extension of the range of `x` is done in
        this case.
    right : bool, optional
        Indicates whether the bins include the rightmost edge or not. If
        right == True (the default), then the bins [1,2,3,4] indicate
        (1,2], (2,3], (3,4].
    labels : array or boolean, default None
        Labels to use for bin edges, or False to return integer bin labels
    retbins : bool, optional
        Whether to return the bins or not. Can be useful if bins is given
        as a scalar.

    Returns
    -------
    out : ndarray of labels
        Same shape as `x`. Array of strings by default, integers if
        labels=False
    bins : ndarray of floats
        Returned only if `retbins` is True.

    Notes
    -----
    The `cut` function can be useful for going from a continuous variable to
    a categorical variable. For example, `cut` could convert ages to groups
    of age ranges.

    Any NA values will be NA in the result

    Examples
    --------
    >>> cut(np.array([.2, 1.4, 2.5, 6.2, 9.7, 2.1]), 3, retbins=True)
    (array([(0.191, 3.367], (0.191, 3.367], (0.191, 3.367], (3.367, 6.533],
           (6.533, 9.7], (0.191, 3.367]], dtype=object),
     array([ 0.1905    ,  3.36666667,  6.53333333,  9.7       ]))
    >>> cut(np.ones(5), 4, labels=False)
    array([2, 2, 2, 2, 2])
    """
    #NOTE: this binning code is changed a bit from histogram for var(x) == 0
    if not np.iterable(bins):
        if np.isscalar(bins) and bins < 1:
            raise ValueError("`bins` should be a positive integer.")
        try: # for array-like
            sz = x.size
        except AttributeError:
            x = np.asarray(x)
            sz = x.size
        if sz == 0:
            # handle empty arrays. Can't determine range, so use 0-1.
            rng = (0, 1)
        else:
            rng = (nanops.nanmin(x), nanops.nanmax(x))
        mn, mx = [mi + 0.0 for mi in rng]

        if mn == mx: # adjust end points before binning
            mn -= .001 * mn
            mx += .001 * mx
            bins = np.linspace(mn, mx, bins+1, endpoint=True)
        else: # adjust end points after binning
            bins = np.linspace(mn, mx, bins+1, endpoint=True)
            adj = (mx - mn) * 0.001 # 0.1% of the range
            if right:
                bins[0] -= adj
            else:
                bins[-1] += adj

    else:
        bins = np.asarray(bins)
        if (np.diff(bins) < 0).any():
            raise ValueError('bins must increase monotonically.')

    side = 'left' if right else 'right'
    ids = bins.searchsorted(x, side=side)

    mask = com.isnull(x)
    has_nas = mask.any()


    if labels is not False:
        if labels is None:
            labels = bins
        else:
            if len(labels) != len(bins):
                raise ValueError('labels must be same length as bins')

        fmt = lambda v: _format_label(v, precision=precision)
        if right:
            strings = ['(%s, %s]' % (fmt(x), fmt(y))
                       for x, y in zip(labels, labels[1:])]
        else:
            strings = ['[%s, %s)' % (fmt(x), fmt(y))
                       for x, y in zip(labels, labels[1:])]

        strings = np.asarray(strings, dtype=object)

        if has_nas:
            np.putmask(ids, mask, 0)

        labels = com.take_1d(strings, ids - 1)
    else:
        labels = ids
        if has_nas:
            labels = labels.astype(np.float64)
            np.putmask(labels, mask, np.nan)

    if not retbins:
        return labels

    return labels, bins
示例#10
0
 def max(self, axis=None, out=None, keepdims=False, skipna=True):
     nv.validate_max((), dict(out=out, keepdims=keepdims))
     return nanops.nanmax(self._ndarray, axis=axis, skipna=skipna)
示例#11
0
文件: tile.py 项目: Itay4/pandas
def cut(x, bins, right=True, labels=None, retbins=False, precision=3,
        include_lowest=False, duplicates='raise'):
    """
    Bin values into discrete intervals.

    Use `cut` when you need to segment and sort data values into bins. This
    function is also useful for going from a continuous variable to a
    categorical variable. For example, `cut` could convert ages to groups of
    age ranges. Supports binning into an equal number of bins, or a
    pre-specified array of bins.

    Parameters
    ----------
    x : array-like
        The input array to be binned. Must be 1-dimensional.
    bins : int, sequence of scalars, or IntervalIndex
        The criteria to bin by.

        * int : Defines the number of equal-width bins in the range of `x`. The
          range of `x` is extended by .1% on each side to include the minimum
          and maximum values of `x`.
        * sequence of scalars : Defines the bin edges allowing for non-uniform
          width. No extension of the range of `x` is done.
        * IntervalIndex : Defines the exact bins to be used. Note that
          IntervalIndex for `bins` must be non-overlapping.

    right : bool, default True
        Indicates whether `bins` includes the rightmost edge or not. If
        ``right == True`` (the default), then the `bins` ``[1, 2, 3, 4]``
        indicate (1,2], (2,3], (3,4]. This argument is ignored when
        `bins` is an IntervalIndex.
    labels : array or bool, optional
        Specifies the labels for the returned bins. Must be the same length as
        the resulting bins. If False, returns only integer indicators of the
        bins. This affects the type of the output container (see below).
        This argument is ignored when `bins` is an IntervalIndex.
    retbins : bool, default False
        Whether to return the bins or not. Useful when bins is provided
        as a scalar.
    precision : int, default 3
        The precision at which to store and display the bins labels.
    include_lowest : bool, default False
        Whether the first interval should be left-inclusive or not.
    duplicates : {default 'raise', 'drop'}, optional
        If bin edges are not unique, raise ValueError or drop non-uniques.

        .. versionadded:: 0.23.0

    Returns
    -------
    out : Categorical, Series, or ndarray
        An array-like object representing the respective bin for each value
        of `x`. The type depends on the value of `labels`.

        * True (default) : returns a Series for Series `x` or a
          Categorical for all other inputs. The values stored within
          are Interval dtype.

        * sequence of scalars : returns a Series for Series `x` or a
          Categorical for all other inputs. The values stored within
          are whatever the type in the sequence is.

        * False : returns an ndarray of integers.

    bins : numpy.ndarray or IntervalIndex.
        The computed or specified bins. Only returned when `retbins=True`.
        For scalar or sequence `bins`, this is an ndarray with the computed
        bins. If set `duplicates=drop`, `bins` will drop non-unique bin. For
        an IntervalIndex `bins`, this is equal to `bins`.

    See Also
    --------
    qcut : Discretize variable into equal-sized buckets based on rank
        or based on sample quantiles.
    Categorical : Array type for storing data that come from a
        fixed set of values.
    Series : One-dimensional array with axis labels (including time series).
    IntervalIndex : Immutable Index implementing an ordered, sliceable set.

    Notes
    -----
    Any NA values will be NA in the result. Out of bounds values will be NA in
    the resulting Series or Categorical object.

    Examples
    --------
    Discretize into three equal-sized bins.

    >>> pd.cut(np.array([1, 7, 5, 4, 6, 3]), 3)
    ... # doctest: +ELLIPSIS
    [(0.994, 3.0], (5.0, 7.0], (3.0, 5.0], (3.0, 5.0], (5.0, 7.0], ...
    Categories (3, interval[float64]): [(0.994, 3.0] < (3.0, 5.0] ...

    >>> pd.cut(np.array([1, 7, 5, 4, 6, 3]), 3, retbins=True)
    ... # doctest: +ELLIPSIS
    ([(0.994, 3.0], (5.0, 7.0], (3.0, 5.0], (3.0, 5.0], (5.0, 7.0], ...
    Categories (3, interval[float64]): [(0.994, 3.0] < (3.0, 5.0] ...
    array([0.994, 3.   , 5.   , 7.   ]))

    Discovers the same bins, but assign them specific labels. Notice that
    the returned Categorical's categories are `labels` and is ordered.

    >>> pd.cut(np.array([1, 7, 5, 4, 6, 3]),
    ...        3, labels=["bad", "medium", "good"])
    [bad, good, medium, medium, good, bad]
    Categories (3, object): [bad < medium < good]

    ``labels=False`` implies you just want the bins back.

    >>> pd.cut([0, 1, 1, 2], bins=4, labels=False)
    array([0, 1, 1, 3])

    Passing a Series as an input returns a Series with categorical dtype:

    >>> s = pd.Series(np.array([2, 4, 6, 8, 10]),
    ...               index=['a', 'b', 'c', 'd', 'e'])
    >>> pd.cut(s, 3)
    ... # doctest: +ELLIPSIS
    a    (1.992, 4.667]
    b    (1.992, 4.667]
    c    (4.667, 7.333]
    d     (7.333, 10.0]
    e     (7.333, 10.0]
    dtype: category
    Categories (3, interval[float64]): [(1.992, 4.667] < (4.667, ...

    Passing a Series as an input returns a Series with mapping value.
    It is used to map numerically to intervals based on bins.

    >>> s = pd.Series(np.array([2, 4, 6, 8, 10]),
    ...               index=['a', 'b', 'c', 'd', 'e'])
    >>> pd.cut(s, [0, 2, 4, 6, 8, 10], labels=False, retbins=True, right=False)
    ... # doctest: +ELLIPSIS
    (a    0.0
     b    1.0
     c    2.0
     d    3.0
     e    4.0
     dtype: float64, array([0, 2, 4, 6, 8]))

    Use `drop` optional when bins is not unique

    >>> pd.cut(s, [0, 2, 4, 6, 10, 10], labels=False, retbins=True,
    ...        right=False, duplicates='drop')
    ... # doctest: +ELLIPSIS
    (a    0.0
     b    1.0
     c    2.0
     d    3.0
     e    3.0
     dtype: float64, array([0, 2, 4, 6, 8]))

    Passing an IntervalIndex for `bins` results in those categories exactly.
    Notice that values not covered by the IntervalIndex are set to NaN. 0
    is to the left of the first bin (which is closed on the right), and 1.5
    falls between two bins.

    >>> bins = pd.IntervalIndex.from_tuples([(0, 1), (2, 3), (4, 5)])
    >>> pd.cut([0, 0.5, 1.5, 2.5, 4.5], bins)
    [NaN, (0, 1], NaN, (2, 3], (4, 5]]
    Categories (3, interval[int64]): [(0, 1] < (2, 3] < (4, 5]]
    """
    # NOTE: this binning code is changed a bit from histogram for var(x) == 0

    # for handling the cut for datetime and timedelta objects
    x_is_series, series_index, name, x = _preprocess_for_cut(x)
    x, dtype = _coerce_to_type(x)

    if not np.iterable(bins):
        if is_scalar(bins) and bins < 1:
            raise ValueError("`bins` should be a positive integer.")

        try:  # for array-like
            sz = x.size
        except AttributeError:
            x = np.asarray(x)
            sz = x.size

        if sz == 0:
            raise ValueError('Cannot cut empty array')

        rng = (nanops.nanmin(x), nanops.nanmax(x))
        mn, mx = [mi + 0.0 for mi in rng]

        if np.isinf(mn) or np.isinf(mx):
            # GH 24314
            raise ValueError('cannot specify integer `bins` when input data '
                             'contains infinity')
        elif mn == mx:  # adjust end points before binning
            mn -= .001 * abs(mn) if mn != 0 else .001
            mx += .001 * abs(mx) if mx != 0 else .001
            bins = np.linspace(mn, mx, bins + 1, endpoint=True)
        else:  # adjust end points after binning
            bins = np.linspace(mn, mx, bins + 1, endpoint=True)
            adj = (mx - mn) * 0.001  # 0.1% of the range
            if right:
                bins[0] -= adj
            else:
                bins[-1] += adj

    elif isinstance(bins, IntervalIndex):
        if bins.is_overlapping:
            raise ValueError('Overlapping IntervalIndex is not accepted.')

    else:
        if is_datetime64tz_dtype(bins):
            bins = np.asarray(bins, dtype=_NS_DTYPE)
        else:
            bins = np.asarray(bins)
        bins = _convert_bin_to_numeric_type(bins, dtype)
        if (np.diff(bins) < 0).any():
            raise ValueError('bins must increase monotonically.')

    fac, bins = _bins_to_cuts(x, bins, right=right, labels=labels,
                              precision=precision,
                              include_lowest=include_lowest,
                              dtype=dtype,
                              duplicates=duplicates)

    return _postprocess_for_cut(fac, bins, retbins, x_is_series,
                                series_index, name, dtype)
示例#12
0
文件: filters.py 项目: lukauskas/dgw
 def is_valid(self, data_row):
     return nanmax(data_row) >= self._highest_pileup_threshold
示例#13
0
 def is_valid(self, data_row):
     return nanmax(data_row) >= self._highest_pileup_threshold
示例#14
0
def cut(x, bins, right=True, labels=None, retbins=False, precision=3):
    """
    Return indices of half-open bins to which each value of `x` belongs.

    Parameters
    ----------
    x : array-like
        Input array to be binned. It has to be 1-dimensional.
    bins : int or sequence of scalars
        If `bins` is an int, it defines the number of equal-width bins in the
        range of `x`. However, in this case, the range of `x` is extended
        by .1% on each side to include the min or max values of `x`. If
        `bins` is a sequence it defines the bin edges allowing for
        non-uniform bin width. No extension of the range of `x` is done in
        this case.
    right : bool, optional
        Indicates whether the bins include the rightmost edge or not. If
        right == True (the default), then the bins [1,2,3,4] indicate
        (1,2], (2,3], (3,4].
    labels : array or boolean, default None
        Labels to use for bin edges, or False to return integer bin labels
    retbins : bool, optional
        Whether to return the bins or not. Can be useful if bins is given
        as a scalar.

    Returns
    -------
    out : ndarray of labels
        Same shape as `x`. Array of strings by default, integers if
        labels=False
    bins : ndarray of floats
        Returned only if `retbins` is True.

    Notes
    -----
    The `cut` function can be useful for going from a continuous variable to
    a categorical variable. For example, `cut` could convert ages to groups
    of age ranges.

    Any NA values will be NA in the result

    Examples
    --------
    >>> cut(np.array([.2, 1.4, 2.5, 6.2, 9.7, 2.1]), 3, retbins=True)
    (array([(0.191, 3.367], (0.191, 3.367], (0.191, 3.367], (3.367, 6.533],
           (6.533, 9.7], (0.191, 3.367]], dtype=object),
     array([ 0.1905    ,  3.36666667,  6.53333333,  9.7       ]))
    >>> cut(np.ones(5), 4, labels=False)
    array([2, 2, 2, 2, 2])
    """
    #NOTE: this binning code is changed a bit from histogram for var(x) == 0
    if not np.iterable(bins):
        if np.isscalar(bins) and bins < 1:
            raise ValueError("`bins` should be a positive integer.")
        try:  # for array-like
            sz = x.size
        except AttributeError:
            x = np.asarray(x)
            sz = x.size
        if sz == 0:
            # handle empty arrays. Can't determine range, so use 0-1.
            rng = (0, 1)
        else:
            rng = (nanops.nanmin(x), nanops.nanmax(x))
        mn, mx = [mi + 0.0 for mi in rng]

        if mn == mx:  # adjust end points before binning
            mn -= .001 * mn
            mx += .001 * mx
            bins = np.linspace(mn, mx, bins + 1, endpoint=True)
        else:  # adjust end points after binning
            bins = np.linspace(mn, mx, bins + 1, endpoint=True)
            adj = (mx - mn) * 0.001  # 0.1% of the range
            if right:
                bins[0] -= adj
            else:
                bins[-1] += adj

    else:
        bins = np.asarray(bins)
        if (np.diff(bins) < 0).any():
            raise ValueError('bins must increase monotonically.')

    return _bins_to_cuts(x,
                         bins,
                         right=right,
                         labels=labels,
                         retbins=retbins,
                         precision=precision)
示例#15
0
 def max(self):
     """ The maximum value of the object """
     return nanops.nanmax(self.values)
示例#16
0
 def max(self, axis=None, out=None, keepdims=False, skipna=True):
     nv.validate_max((), dict(out=out, keepdims=keepdims))
     return nanops.nanmax(self._ndarray, axis=axis, skipna=skipna)
示例#17
0
def cut(x,
        bins,
        right=True,
        labels=None,
        retbins=False,
        precision=3,
        include_lowest=False):
    """
    Return indices of half-open bins to which each value of `x` belongs.

    Parameters
    ----------
    x : array-like
        Input array to be binned. It has to be 1-dimensional.
    bins : int or sequence of scalars
        If `bins` is an int, it defines the number of equal-width bins in the
        range of `x`. However, in this case, the range of `x` is extended
        by .1% on each side to include the min or max values of `x`. If
        `bins` is a sequence it defines the bin edges allowing for
        non-uniform bin width. No extension of the range of `x` is done in
        this case.
    right : bool, optional
        Indicates whether the bins include the rightmost edge or not. If
        right == True (the default), then the bins [1,2,3,4] indicate
        (1,2], (2,3], (3,4].
    labels : array or boolean, default None
        Used as labels for the resulting bins. Must be of the same length as
        the resulting bins. If False, return only integer indicators of the
        bins.
    retbins : bool, optional
        Whether to return the bins or not. Can be useful if bins is given
        as a scalar.
    precision : int
        The precision at which to store and display the bins labels
    include_lowest : bool
        Whether the first interval should be left-inclusive or not.

    Returns
    -------
    out : Categorical or Series or array of integers if labels is False
        The return type (Categorical or Series) depends on the input: a Series
        of type category if input is a Series else Categorical. Bins are
        represented as categories when categorical data is returned.
    bins : ndarray of floats
        Returned only if `retbins` is True.

    Notes
    -----
    The `cut` function can be useful for going from a continuous variable to
    a categorical variable. For example, `cut` could convert ages to groups
    of age ranges.

    Any NA values will be NA in the result.  Out of bounds values will be NA in
    the resulting Categorical object


    Examples
    --------
    >>> pd.cut(np.array([.2, 1.4, 2.5, 6.2, 9.7, 2.1]), 3, retbins=True)
    ([(0.191, 3.367], (0.191, 3.367], (0.191, 3.367], (3.367, 6.533],
      (6.533, 9.7], (0.191, 3.367]]
    Categories (3, object): [(0.191, 3.367] < (3.367, 6.533] < (6.533, 9.7]],
    array([ 0.1905    ,  3.36666667,  6.53333333,  9.7       ]))
    >>> pd.cut(np.array([.2, 1.4, 2.5, 6.2, 9.7, 2.1]), 3,
               labels=["good","medium","bad"])
    [good, good, good, medium, bad, good]
    Categories (3, object): [good < medium < bad]
    >>> pd.cut(np.ones(5), 4, labels=False)
    array([1, 1, 1, 1, 1], dtype=int64)
    """
    # NOTE: this binning code is changed a bit from histogram for var(x) == 0
    if not np.iterable(bins):
        if is_scalar(bins) and bins < 1:
            raise ValueError("`bins` should be a positive integer.")
        try:  # for array-like
            sz = x.size
        except AttributeError:
            x = np.asarray(x)
            sz = x.size
        if sz == 0:
            raise ValueError('Cannot cut empty array')
            # handle empty arrays. Can't determine range, so use 0-1.
            # rng = (0, 1)
        else:
            rng = (nanops.nanmin(x), nanops.nanmax(x))
        mn, mx = [mi + 0.0 for mi in rng]

        if mn == mx:  # adjust end points before binning
            mn -= .001 * abs(mn)
            mx += .001 * abs(mx)
            bins = np.linspace(mn, mx, bins + 1, endpoint=True)
        else:  # adjust end points after binning
            bins = np.linspace(mn, mx, bins + 1, endpoint=True)
            adj = (mx - mn) * 0.001  # 0.1% of the range
            if right:
                bins[0] -= adj
            else:
                bins[-1] += adj

    else:
        bins = np.asarray(bins)
        if (np.diff(bins) < 0).any():
            raise ValueError('bins must increase monotonically.')

    return _bins_to_cuts(x,
                         bins,
                         right=right,
                         labels=labels,
                         retbins=retbins,
                         precision=precision,
                         include_lowest=include_lowest)
示例#18
0
 def max(self):
     # type: () -> Scalar
     """ The maximum value of the object """
     return nanops.nanmax(self.values)