示例#1
0
    def parse(self,
              sheetname=0,
              header=0,
              skiprows=None,
              skip_footer=0,
              names=None,
              index_col=None,
              parse_cols=None,
              parse_dates=False,
              date_parser=None,
              na_values=None,
              thousands=None,
              convert_float=True,
              has_index_names=None,
              true_values=None,
              false_values=None,
              squeeze=False,
              **kwds):

        data = self.__get_sheet(sheetname)
        parser = TextParser(data,
                            header=header,
                            index_col=index_col,
                            has_index_names=has_index_names,
                            na_values=na_values,
                            thousands=thousands,
                            parse_dates=parse_dates,
                            date_parser=date_parser,
                            true_values=true_values,
                            false_values=false_values,
                            skiprows=skiprows,
                            skipfooter=skip_footer,
                            squeeze=squeeze,
                            **kwds)
        return parser.read()
示例#2
0
def _data_to_frame(data, header, index_col, skiprows, infer_types, parse_dates, tupleize_cols, thousands):
    head, body, foot = data

    if head:
        body = [head] + body

        if header is None:  # special case when a table has <th> elements
            header = 0

    if foot:
        body += [foot]

    # fill out elements of body that are "ragged"
    _expand_elements(body)

    tp = TextParser(
        body,
        header=header,
        index_col=index_col,
        skiprows=_get_skiprows(skiprows),
        parse_dates=parse_dates,
        tupleize_cols=tupleize_cols,
        thousands=thousands,
    )
    df = tp.read()
    return df
示例#3
0
def _data_to_frame(**kwargs):
    head, body, foot = kwargs.pop("data")
    header = kwargs.pop("header")
    kwargs["skiprows"] = _get_skiprows(kwargs["skiprows"])
    if head:
        body = head + body

        # Infer header when there is a <thead> or top <th>-only rows
        if header is None:
            if len(head) == 1:
                header = 0
            else:
                # ignore all-empty-text rows
                header = [
                    i for i, row in enumerate(head)
                    if any(text for text in row)
                ]

    if foot:
        body += foot

    # fill out elements of body that are "ragged"
    _expand_elements(body)
    tp = TextParser(body, header=header, **kwargs)
    df = tp.read()
    return df
示例#4
0
def _data_to_frame(data, header, index_col, skiprows, infer_types, parse_dates,
                   tupleize_cols, thousands):
    head, body, _ = data  # _ is footer which is rarely used: ignore for now

    if head:
        body = [head] + body

        if header is None:  # special case when a table has <th> elements
            header = 0

    # fill out elements of body that are "ragged"
    _expand_elements(body)

    tp = TextParser(body,
                    header=header,
                    index_col=index_col,
                    skiprows=_get_skiprows(skiprows),
                    parse_dates=parse_dates,
                    tupleize_cols=tupleize_cols,
                    thousands=thousands)
    df = tp.read()

    if infer_types:  # TODO: rm this code so infer_types has no effect in 0.14
        df = df.convert_objects(convert_dates='coerce')
    else:
        df = df.applymap(text_type)
    return df
示例#5
0
def _data_to_frame(data, header, index_col, skiprows, parse_dates,
                   tupleize_cols, thousands):
    head, body, foot = data

    if head:
        body = [head] + body

        if header is None:  # special case when a table has <th> elements
            header = 0

    if foot:
        body += [foot]

    # fill out elements of body that are "ragged"
    _expand_elements(body)

    tp = TextParser(body,
                    header=header,
                    index_col=index_col,
                    skiprows=_get_skiprows(skiprows),
                    parse_dates=parse_dates,
                    tupleize_cols=tupleize_cols,
                    thousands=thousands)
    df = tp.read()
    return df
示例#6
0
    def _parse_excel(self,
                     sheetname,
                     header=0,
                     skiprows=None,
                     skip_footer=0,
                     index_col=None,
                     has_index_names=None,
                     parse_cols=None,
                     parse_dates=False,
                     date_parser=None,
                     na_values=None,
                     thousands=None,
                     chunksize=None):
        from xlrd import (xldate_as_tuple, XL_CELL_DATE, XL_CELL_ERROR,
                          XL_CELL_BOOLEAN)

        datemode = self.book.datemode
        sheet = self.book.sheet_by_name(sheetname)

        data = []
        should_parse = {}
        for i in range(sheet.nrows):
            row = []
            for j, (value, typ) in enumerate(
                    izip(sheet.row_values(i), sheet.row_types(i))):
                if parse_cols is not None and j not in should_parse:
                    should_parse[j] = self._should_parse(j, parse_cols)

                if parse_cols is None or should_parse[j]:
                    if typ == XL_CELL_DATE:
                        dt = xldate_as_tuple(value, datemode)
                        # how to produce this first case?
                        if dt[0] < datetime.MINYEAR:  # pragma: no cover
                            value = datetime.time(*dt[3:])
                        else:
                            value = datetime.datetime(*dt)
                    elif typ == XL_CELL_ERROR:
                        value = np.nan
                    elif typ == XL_CELL_BOOLEAN:
                        value = bool(value)
                    row.append(value)

            data.append(row)

        if header is not None:
            data[header] = _trim_excel_header(data[header])

        parser = TextParser(data,
                            header=header,
                            index_col=index_col,
                            has_index_names=has_index_names,
                            na_values=na_values,
                            thousands=thousands,
                            parse_dates=parse_dates,
                            date_parser=date_parser,
                            skiprows=skiprows,
                            skip_footer=skip_footer,
                            chunksize=chunksize)

        return parser.read()
示例#7
0
    def test_read_text_list(self):
        data = """A,B,C\nfoo,1,2,3\nbar,4,5,6"""
        as_list = [["A", "B", "C"], ["foo", "1", "2", "3"], ["bar", "4", "5", "6"]]
        df = self.read_csv(StringIO(data), index_col=0)

        parser = TextParser(as_list, index_col=0, chunksize=2)
        chunk = parser.read(None)

        tm.assert_frame_equal(chunk, df)
示例#8
0
文件: common.py 项目: aFraley/pandas
    def test_read_text_list(self):
        data = """A,B,C\nfoo,1,2,3\nbar,4,5,6"""
        as_list = [['A', 'B', 'C'], ['foo', '1', '2', '3'], ['bar',
                                                             '4', '5', '6']]
        df = self.read_csv(StringIO(data), index_col=0)

        parser = TextParser(as_list, index_col=0, chunksize=2)
        chunk = parser.read(None)

        tm.assert_frame_equal(chunk, df)
示例#9
0
    def test_read_text_list(self):
        data = """A,B,C\nfoo,1,2,3\nbar,4,5,6"""
        as_list = [['A', 'B', 'C'], ['foo', '1', '2', '3'],
                   ['bar', '4', '5', '6']]
        df = self.read_csv(StringIO(data), index_col=0)

        parser = TextParser(as_list, index_col=0, chunksize=2)
        chunk = parser.read(None)

        tm.assert_frame_equal(chunk, df)
示例#10
0
文件: excel.py 项目: jtornero/pandas
    def _parse_excel(self, sheetname, header=0, skiprows=None, skip_footer=0,
                     index_col=None, has_index_names=None, parse_cols=None,
                     parse_dates=False, date_parser=None, na_values=None,
                     thousands=None, chunksize=None, **kwds):
        from xlrd import (xldate_as_tuple, XL_CELL_DATE,
                          XL_CELL_ERROR, XL_CELL_BOOLEAN)

        datemode = self.book.datemode
        if isinstance(sheetname, compat.string_types):
            sheet = self.book.sheet_by_name(sheetname)
        else:  # assume an integer if not a string
            sheet = self.book.sheet_by_index(sheetname)

        data = []
        should_parse = {}
        for i in range(sheet.nrows):
            row = []
            for j, (value, typ) in enumerate(zip(sheet.row_values(i),
                                                 sheet.row_types(i))):
                if parse_cols is not None and j not in should_parse:
                    should_parse[j] = self._should_parse(j, parse_cols)

                if parse_cols is None or should_parse[j]:
                    if typ == XL_CELL_DATE:
                        dt = xldate_as_tuple(value, datemode)
                        # how to produce this first case?
                        if dt[0] < datetime.MINYEAR:  # pragma: no cover
                            value = datetime.time(*dt[3:])
                        else:
                            value = datetime.datetime(*dt)
                    elif typ == XL_CELL_ERROR:
                        value = np.nan
                    elif typ == XL_CELL_BOOLEAN:
                        value = bool(value)
                    row.append(value)

            data.append(row)

        if header is not None:
            data[header] = _trim_excel_header(data[header])

        parser = TextParser(data, header=header, index_col=index_col,
                            has_index_names=has_index_names,
                            na_values=na_values,
                            thousands=thousands,
                            parse_dates=parse_dates,
                            date_parser=date_parser,
                            skiprows=skiprows,
                            skip_footer=skip_footer,
                            chunksize=chunksize,
                            **kwds)

        return parser.read()
示例#11
0
def _data_to_frame(**kwargs):
    head, body, foot = kwargs.pop('data')
    header = kwargs.pop('header')
    kwargs['skiprows'] = _get_skiprows(kwargs['skiprows'])
    if head:
        rows = lrange(len(head))
        body = head + body
        if header is None:  # special case when a table has <th> elements
            header = 0 if rows == [0] else rows

    if foot:
        body += [foot]

    # fill out elements of body that are "ragged"
    _expand_elements(body)
    tp = TextParser(body, header=header, **kwargs)
    df = tp.read()
    return df
示例#12
0
文件: html.py 项目: masayas/pandas
def _data_to_frame(**kwargs):
    head, body, foot = kwargs.pop('data')
    header = kwargs.pop('header')
    kwargs['skiprows'] = _get_skiprows(kwargs['skiprows'])
    if head:
        rows = lrange(len(head))
        body = head + body
        if header is None:  # special case when a table has <th> elements
            header = 0 if rows == [0] else rows

    if foot:
        body += [foot]

    # fill out elements of body that are "ragged"
    _expand_elements(body)
    tp = TextParser(body, header=header, **kwargs)
    df = tp.read()
    return df
示例#13
0
文件: html.py 项目: BorisVerk/pandas
def _data_to_frame(data, header, index_col, skiprows, infer_types,
                   parse_dates, tupleize_cols, thousands):
    head, body, _ = data  # _ is footer which is rarely used: ignore for now

    if head:
        body = [head] + body

        if header is None:  # special case when a table has <th> elements
            header = 0

    # fill out elements of body that are "ragged"
    _expand_elements(body)

    tp = TextParser(body, header=header, index_col=index_col,
                    skiprows=_get_skiprows(skiprows),
                    parse_dates=parse_dates, tupleize_cols=tupleize_cols,
                    thousands=thousands)
    df = tp.read()
    return df
示例#14
0
文件: html.py 项目: pedros/pandas
def _data_to_frame(data, header, index_col, skiprows, infer_types, parse_dates,
                   tupleize_cols, thousands):
    head, body, _ = data  # _ is footer which is rarely used: ignore for now

    if head:
        body = [head] + body

        if header is None:  # special case when a table has <th> elements
            header = 0

    # fill out elements of body that are "ragged"
    _expand_elements(body)

    tp = TextParser(body,
                    header=header,
                    index_col=index_col,
                    skiprows=_get_skiprows(skiprows),
                    parse_dates=parse_dates,
                    tupleize_cols=tupleize_cols,
                    thousands=thousands)
    df = tp.read()
    return df
def _data_to_frame(data, header, index_col, skiprows, infer_types,
                   parse_dates, tupleize_cols, thousands):
    head, body, _ = data  # _ is footer which is rarely used: ignore for now

    if head:
        body = [head] + body

        if header is None:  # special case when a table has <th> elements
            header = 0

    # fill out elements of body that are "ragged"
    _expand_elements(body)

    tp = TextParser(body, header=header, index_col=index_col,
                    skiprows=_get_skiprows(skiprows),
                    parse_dates=parse_dates, tupleize_cols=tupleize_cols,
                    thousands=thousands)
    df = tp.read()

    if infer_types:  # TODO: rm this code so infer_types has no effect in 0.14
        df = df.convert_objects(convert_dates='coerce')
    else:
        df = df.applymap(text_type)
    return df
示例#16
0
def _data_to_frame(**kwargs):
    head, body, foot = kwargs.pop('data')
    header = kwargs.pop('header')
    kwargs['skiprows'] = _get_skiprows(kwargs['skiprows'])
    if head:
        body = head + body

        # Infer header when there is a <thead> or top <th>-only rows
        if header is None:
            if len(head) == 1:
                header = 0
            else:
                # ignore all-empty-text rows
                header = [i for i, row in enumerate(head)
                          if any(text for text in row)]

    if foot:
        body += foot

    # fill out elements of body that are "ragged"
    _expand_elements(body)
    tp = TextParser(body, header=header, **kwargs)
    df = tp.read()
    return df
示例#17
0
    def _parse_excel(self,
                     sheetname=0,
                     header=0,
                     skiprows=None,
                     names=None,
                     skip_footer=0,
                     index_col=None,
                     has_index_names=None,
                     parse_cols=None,
                     parse_dates=False,
                     date_parser=None,
                     na_values=None,
                     thousands=None,
                     convert_float=True,
                     true_values=None,
                     false_values=None,
                     verbose=False,
                     dtype=None,
                     squeeze=False,
                     **kwds):

        skipfooter = kwds.pop('skipfooter', None)
        if skipfooter is not None:
            skip_footer = skipfooter

        _validate_header_arg(header)
        if has_index_names is not None:
            warn(
                "\nThe has_index_names argument is deprecated; index names "
                "will be automatically inferred based on index_col.\n"
                "This argmument is still necessary if reading Excel output "
                "from 0.16.2 or prior with index names.",
                FutureWarning,
                stacklevel=3)

        if 'chunksize' in kwds:
            raise NotImplementedError("chunksize keyword of read_excel "
                                      "is not implemented")

        if parse_dates is True and index_col is None:
            warn("The 'parse_dates=True' keyword of read_excel was provided"
                 " without an 'index_col' keyword value.")

        def _parse_cell(cell_contents, cell_typ):
            """converts the contents of the cell into a pandas
               appropriate object"""

            if cell_typ == XL_CELL_DATE:

                if xlrd_0_9_3:
                    # Use the newer xlrd datetime handling.
                    try:
                        cell_contents = \
                            xldate.xldate_as_datetime(cell_contents,
                                                      epoch1904)
                    except OverflowError:
                        return cell_contents
                    # Excel doesn't distinguish between dates and time,
                    # so we treat dates on the epoch as times only.
                    # Also, Excel supports 1900 and 1904 epochs.
                    year = (cell_contents.timetuple())[0:3]
                    if ((not epoch1904 and year == (1899, 12, 31))
                            or (epoch1904 and year == (1904, 1, 1))):
                        cell_contents = time(cell_contents.hour,
                                             cell_contents.minute,
                                             cell_contents.second,
                                             cell_contents.microsecond)
                else:
                    # Use the xlrd <= 0.9.2 date handling.
                    try:
                        dt = xldate.xldate_as_tuple(cell_contents, epoch1904)

                    except xldate.XLDateTooLarge:
                        return cell_contents

                    if dt[0] < MINYEAR:
                        cell_contents = time(*dt[3:])
                    else:
                        cell_contents = datetime(*dt)

            elif cell_typ == XL_CELL_ERROR:
                cell_contents = np.nan
            elif cell_typ == XL_CELL_BOOLEAN:
                cell_contents = bool(cell_contents)
            elif convert_float and cell_typ == XL_CELL_NUMBER:
                # GH5394 - Excel 'numbers' are always floats
                # it's a minimal perf hit and less suprising
                val = int(cell_contents)
                if val == cell_contents:
                    cell_contents = val
            return cell_contents

        ret_dict = False
        if isinstance(sheetname, list):
            sheets = sheetname
            ret_dict = True
        elif sheetname is None:
            sheets = self.sheet_names
            ret_dict = True
        else:
            sheets = [sheetname]

        # handle same-type duplicates.
        sheets = list(OrderedDict.fromkeys(sheets).keys())
        output = OrderedDict()

        import xlrd
        from xlrd import (xldate, XL_CELL_DATE, XL_CELL_ERROR, XL_CELL_BOOLEAN,
                          XL_CELL_NUMBER)

        epoch1904 = self.book.datemode

        # xlrd >= 0.9.3 can return datetime objects directly.
        if LooseVersion(xlrd.__VERSION__) >= LooseVersion("0.9.3"):
            xlrd_0_9_3 = True
        else:
            xlrd_0_9_3 = False

        # Keep sheetname to maintain backwards compatibility.
        for asheetname in sheets:
            if verbose:
                print("Reading sheet %s" % asheetname)
            if isinstance(asheetname, compat.string_types):
                sheet = self.book.sheet_by_name(asheetname)
            else:  # assume an integer if not a string
                sheet = self.book.sheet_by_index(asheetname)

            data = []
            should_parse = {}

            if sheet.nrows > 5000:
                raise Exception(
                    "The raw file contains more than 5000 rows. Please check if it is correct or split the files (max: 5000 rows) for upload"
                )
            elif kwds.get('MaxTest'):
                continue

            for i in range(sheet.nrows):

                row = []
                for j, (value, typ) in enumerate(
                        zip(sheet.row_values(i), sheet.row_types(i))):
                    if parse_cols is not None and j not in should_parse:
                        should_parse[j] = self._should_parse(j, parse_cols)

                    if parse_cols is None or should_parse[j]:
                        row.append(_parse_cell(value, typ))
                data.append(row)
#            output[asheetname] = data
            if sheet.nrows == 0:
                output[asheetname] = DataFrame()
                continue

            if is_list_like(header) and len(header) == 1:
                header = header[0]

            # forward fill and pull out names for MultiIndex column
            header_names = None
            if header is not None:
                if is_list_like(header):
                    header_names = []
                    control_row = [True for x in data[0]]
                    for row in header:
                        if is_integer(skiprows):
                            row += skiprows

                        data[row], control_row = _fill_mi_header(
                            data[row], control_row)
                        header_name, data[row] = _pop_header_name(
                            data[row], index_col)
                        header_names.append(header_name)

            if is_list_like(index_col):
                # forward fill values for MultiIndex index
                if not is_list_like(header):
                    offset = 1 + header
                else:
                    offset = 1 + max(header)

                for col in index_col:
                    last = data[offset][col]
                    for row in range(offset + 1, len(data)):
                        if data[row][col] == '' or data[row][col] is None:
                            data[row][col] = last
                        else:
                            last = data[row][col]

            if is_list_like(header) and len(header) > 1:
                has_index_names = True

            if kwds.get('parsed'):
                try:
                    parser = TextParser(data,
                                        header=header,
                                        index_col=index_col,
                                        has_index_names=has_index_names,
                                        na_values=na_values,
                                        thousands=thousands,
                                        parse_dates=parse_dates,
                                        date_parser=date_parser,
                                        true_values=true_values,
                                        false_values=false_values,
                                        skiprows=skiprows,
                                        skipfooter=skip_footer,
                                        squeeze=squeeze,
                                        dtype=dtype,
                                        **kwds)
                    output[asheetname] = parser.read()
                    if names is not None:
                        output[asheetname].columns = names
                    if not squeeze or isinstance(output[asheetname],
                                                 DataFrame):
                        output[asheetname].columns = output[
                            asheetname].columns.set_names(header_names)
                except EmptyDataError:
                    # No Data, return an empty DataFrame
                    output[asheetname] = DataFrame()
            else:
                output[asheetname] = data

        if ret_dict or kwds.get('MaxTest'):
            return output
        else:
            return output[asheetname]
示例#18
0
    def parse(
        self,
        sheet_name=0,
        header=0,
        names=None,
        index_col=None,
        usecols=None,
        squeeze=False,
        dtype=None,
        true_values=None,
        false_values=None,
        skiprows=None,
        nrows=None,
        na_values=None,
        verbose=False,
        parse_dates=False,
        date_parser=None,
        thousands=None,
        comment=None,
        skipfooter=0,
        convert_float=True,
        mangle_dupe_cols=True,
        **kwds,
    ):

        validate_header_arg(header)

        ret_dict = False

        # Keep sheetname to maintain backwards compatibility.
        if isinstance(sheet_name, list):
            sheets = sheet_name
            ret_dict = True
        elif sheet_name is None:
            sheets = self.sheet_names
            ret_dict = True
        else:
            sheets = [sheet_name]

        # handle same-type duplicates.
        sheets = list(dict.fromkeys(sheets).keys())

        output = {}

        for asheetname in sheets:
            if verbose:
                print(f"Reading sheet {asheetname}")

            if isinstance(asheetname, str):
                sheet = self.get_sheet_by_name(asheetname)
            else:  # assume an integer if not a string
                sheet = self.get_sheet_by_index(asheetname)

            data = self.get_sheet_data(sheet, convert_float)
            usecols = maybe_convert_usecols(usecols)

            if not data:
                output[asheetname] = DataFrame()
                continue

            if is_list_like(header) and len(header) == 1:
                header = header[0]

            # forward fill and pull out names for MultiIndex column
            header_names = None
            if header is not None and is_list_like(header):
                header_names = []
                control_row = [True] * len(data[0])

                for row in header:
                    if is_integer(skiprows):
                        row += skiprows

                    data[row], control_row = fill_mi_header(
                        data[row], control_row)

                    if index_col is not None:
                        header_name, _ = pop_header_name(data[row], index_col)
                        header_names.append(header_name)

            if is_list_like(index_col):
                # Forward fill values for MultiIndex index.
                if header is None:
                    offset = 0
                elif not is_list_like(header):
                    offset = 1 + header
                else:
                    offset = 1 + max(header)

                # Check if we have an empty dataset
                # before trying to collect data.
                if offset < len(data):
                    for col in index_col:
                        last = data[offset][col]

                        for row in range(offset + 1, len(data)):
                            if data[row][col] == "" or data[row][col] is None:
                                data[row][col] = last
                            else:
                                last = data[row][col]

            has_index_names = is_list_like(header) and len(header) > 1

            # GH 12292 : error when read one empty column from excel file
            try:
                parser = TextParser(
                    data,
                    names=names,
                    header=header,
                    index_col=index_col,
                    has_index_names=has_index_names,
                    squeeze=squeeze,
                    dtype=dtype,
                    true_values=true_values,
                    false_values=false_values,
                    skiprows=skiprows,
                    nrows=nrows,
                    na_values=na_values,
                    parse_dates=parse_dates,
                    date_parser=date_parser,
                    thousands=thousands,
                    comment=comment,
                    skipfooter=skipfooter,
                    usecols=usecols,
                    mangle_dupe_cols=mangle_dupe_cols,
                    **kwds,
                )

                output[asheetname] = parser.read(nrows=nrows)

                if not squeeze or isinstance(output[asheetname], DataFrame):
                    if header_names:
                        output[asheetname].columns = output[
                            asheetname].columns.set_names(header_names)

            except EmptyDataError:
                # No Data, return an empty DataFrame
                output[asheetname] = DataFrame()

        if ret_dict:
            return output
        else:
            return output[asheetname]
def _data_to_frame(data):
    _expand_elements(data)
    tp = TextParser(data)
    df = tp.read()
    return df
示例#20
0
    def _parse_excel(self,
                     sheetname=0,
                     header=0,
                     skiprows=None,
                     skip_footer=0,
                     index_col=None,
                     has_index_names=None,
                     parse_cols=None,
                     parse_dates=False,
                     date_parser=None,
                     na_values=None,
                     thousands=None,
                     chunksize=None,
                     convert_float=True,
                     verbose=False,
                     **kwds):
        import xlrd
        from xlrd import (xldate, XL_CELL_DATE, XL_CELL_ERROR, XL_CELL_BOOLEAN,
                          XL_CELL_NUMBER)

        epoch1904 = self.book.datemode

        def _parse_cell(cell_contents, cell_typ):
            """converts the contents of the cell into a pandas
               appropriate object"""

            if cell_typ == XL_CELL_DATE:
                if xlrd_0_9_3:
                    # Use the newer xlrd datetime handling.
                    cell_contents = xldate.xldate_as_datetime(
                        cell_contents, epoch1904)

                    # Excel doesn't distinguish between dates and time,
                    # so we treat dates on the epoch as times only.
                    # Also, Excel supports 1900 and 1904 epochs.
                    year = (cell_contents.timetuple())[0:3]
                    if ((not epoch1904 and year == (1899, 12, 31))
                            or (epoch1904 and year == (1904, 1, 1))):
                        cell_contents = datetime.time(
                            cell_contents.hour, cell_contents.minute,
                            cell_contents.second, cell_contents.microsecond)
                else:
                    # Use the xlrd <= 0.9.2 date handling.
                    dt = xldate.xldate_as_tuple(cell_contents, epoch1904)

                    if dt[0] < datetime.MINYEAR:
                        cell_contents = datetime.time(*dt[3:])
                    else:
                        cell_contents = datetime.datetime(*dt)

            elif cell_typ == XL_CELL_ERROR:
                cell_contents = np.nan
            elif cell_typ == XL_CELL_BOOLEAN:
                cell_contents = bool(cell_contents)
            elif convert_float and cell_typ == XL_CELL_NUMBER:
                # GH5394 - Excel 'numbers' are always floats
                # it's a minimal perf hit and less suprising
                val = int(cell_contents)
                if val == cell_contents:
                    cell_contents = val
            return cell_contents

        # xlrd >= 0.9.3 can return datetime objects directly.
        if LooseVersion(xlrd.__VERSION__) >= LooseVersion("0.9.3"):
            xlrd_0_9_3 = True
        else:
            xlrd_0_9_3 = False

        ret_dict = False

        #Keep sheetname to maintain backwards compatibility.
        if isinstance(sheetname, list):
            sheets = sheetname
            ret_dict = True
        elif sheetname is None:
            sheets = self.sheet_names
            ret_dict = True
        else:
            sheets = [sheetname]

        #handle same-type duplicates.
        sheets = list(set(sheets))

        output = {}

        for asheetname in sheets:
            if verbose:
                print("Reading sheet %s" % asheetname)

            if isinstance(asheetname, compat.string_types):
                sheet = self.book.sheet_by_name(asheetname)
            else:  # assume an integer if not a string
                sheet = self.book.sheet_by_index(asheetname)

            data = []
            should_parse = {}

            for i in range(sheet.nrows):
                row = []
                for j, (value, typ) in enumerate(
                        zip(sheet.row_values(i), sheet.row_types(i))):
                    if parse_cols is not None and j not in should_parse:
                        should_parse[j] = self._should_parse(j, parse_cols)

                    if parse_cols is None or should_parse[j]:
                        row.append(_parse_cell(value, typ))
                data.append(row)

            if sheet.nrows == 0:
                return DataFrame()

            if header is not None:
                data[header] = _trim_excel_header(data[header])

            parser = TextParser(data,
                                header=header,
                                index_col=index_col,
                                has_index_names=has_index_names,
                                na_values=na_values,
                                thousands=thousands,
                                parse_dates=parse_dates,
                                date_parser=date_parser,
                                skiprows=skiprows,
                                skip_footer=skip_footer,
                                chunksize=chunksize,
                                **kwds)

            output[asheetname] = parser.read()

        if ret_dict:
            return output
        else:
            return output[asheetname]
示例#21
0
    def _parse_excel(self, sheetname=0, header=0, skiprows=None, skip_footer=0,
                     index_col=None, has_index_names=None, parse_cols=None,
                     parse_dates=False, date_parser=None, na_values=None,
                     thousands=None, chunksize=None, convert_float=True,
                     **kwds):
        import xlrd
        from xlrd import (xldate, XL_CELL_DATE,
                          XL_CELL_ERROR, XL_CELL_BOOLEAN,
                          XL_CELL_NUMBER)

        epoch1904 = self.book.datemode

        # xlrd >= 0.9.3 can return datetime objects directly.
        if LooseVersion(xlrd.__VERSION__) >= LooseVersion("0.9.3"):
            xlrd_0_9_3 = True
        else:
            xlrd_0_9_3 = False

        if isinstance(sheetname, compat.string_types):
            sheet = self.book.sheet_by_name(sheetname)
        else:  # assume an integer if not a string
            sheet = self.book.sheet_by_index(sheetname)

        data = []
        should_parse = {}
        for i in range(sheet.nrows):
            row = []
            for j, (value, typ) in enumerate(zip(sheet.row_values(i),
                                                 sheet.row_types(i))):
                if parse_cols is not None and j not in should_parse:
                    should_parse[j] = self._should_parse(j, parse_cols)

                if parse_cols is None or should_parse[j]:
                    if typ == XL_CELL_DATE:
                        if xlrd_0_9_3:
                            # Use the newer xlrd datetime handling.
                            value = xldate.xldate_as_datetime(value, epoch1904)

                            # Excel doesn't distinguish between dates and time,
                            # so we treat dates on the epoch as times only.
                            # Also, Excel supports 1900 and 1904 epochs.
                            year = (value.timetuple())[0:3]
                            if ((not epoch1904 and year == (1899, 12, 31))
                                    or (epoch1904 and year == (1904, 1, 1))):
                                    value = datetime.time(value.hour,
                                                          value.minute,
                                                          value.second,
                                                          value.microsecond)
                        else:
                            # Use the xlrd <= 0.9.2 date handling.
                            dt = xldate.xldate_as_tuple(value, epoch1904)

                            if dt[0] < datetime.MINYEAR:
                                value = datetime.time(*dt[3:])
                            else:
                                value = datetime.datetime(*dt)

                    elif typ == XL_CELL_ERROR:
                        value = np.nan
                    elif typ == XL_CELL_BOOLEAN:
                        value = bool(value)
                    elif convert_float and typ == XL_CELL_NUMBER:
                        # GH5394 - Excel 'numbers' are always floats
                        # it's a minimal perf hit and less suprising
                        val = int(value)
                        if val == value:
                            value = val

                    row.append(value)

            data.append(row)

        if header is not None:
            data[header] = _trim_excel_header(data[header])

        parser = TextParser(data, header=header, index_col=index_col,
                            has_index_names=has_index_names,
                            na_values=na_values,
                            thousands=thousands,
                            parse_dates=parse_dates,
                            date_parser=date_parser,
                            skiprows=skiprows,
                            skip_footer=skip_footer,
                            chunksize=chunksize,
                            **kwds)

        return parser.read()
示例#22
0
文件: excel.py 项目: legolin/pandas
    def _parse_excel(self, sheetname=0, header=0, skiprows=None, skip_footer=0,
                     index_col=None, has_index_names=None, parse_cols=None,
                     parse_dates=False, date_parser=None, na_values=None,
                     thousands=None, chunksize=None, convert_float=True,
                     verbose=False, **kwds):
        import xlrd
        from xlrd import (xldate, XL_CELL_DATE,
                          XL_CELL_ERROR, XL_CELL_BOOLEAN,
                          XL_CELL_NUMBER)

        epoch1904 = self.book.datemode

        def _parse_cell(cell_contents,cell_typ):
            """converts the contents of the cell into a pandas
               appropriate object"""
               
            if cell_typ == XL_CELL_DATE:
                if xlrd_0_9_3:
                    # Use the newer xlrd datetime handling.
                    cell_contents = xldate.xldate_as_datetime(cell_contents,
                                                              epoch1904)

                    # Excel doesn't distinguish between dates and time,
                    # so we treat dates on the epoch as times only.
                    # Also, Excel supports 1900 and 1904 epochs.
                    year = (cell_contents.timetuple())[0:3]
                    if ((not epoch1904 and year == (1899, 12, 31))
                            or (epoch1904 and year == (1904, 1, 1))):
                        cell_contents = datetime.time(cell_contents.hour,
                                              cell_contents.minute,
                                              cell_contents.second,
                                              cell_contents.microsecond)
                else:
                    # Use the xlrd <= 0.9.2 date handling.
                    dt = xldate.xldate_as_tuple(cell_contents, epoch1904)

                    if dt[0] < datetime.MINYEAR:
                        cell_contents = datetime.time(*dt[3:])
                    else:
                        cell_contents = datetime.datetime(*dt)

            elif cell_typ == XL_CELL_ERROR:
                cell_contents = np.nan
            elif cell_typ == XL_CELL_BOOLEAN:
                cell_contents = bool(cell_contents)
            elif convert_float and cell_typ == XL_CELL_NUMBER:
                # GH5394 - Excel 'numbers' are always floats
                # it's a minimal perf hit and less suprising
                val = int(cell_contents)
                if val == cell_contents:
                    cell_contents = val
            return cell_contents

        # xlrd >= 0.9.3 can return datetime objects directly.
        if LooseVersion(xlrd.__VERSION__) >= LooseVersion("0.9.3"):
            xlrd_0_9_3 = True
        else:
            xlrd_0_9_3 = False
        
        ret_dict = False
        
        #Keep sheetname to maintain backwards compatibility.
        if isinstance(sheetname, list):
            sheets = sheetname
            ret_dict = True
        elif sheetname is None:
            sheets = self.sheet_names
            ret_dict = True
        else:
            sheets = [sheetname]
        
        #handle same-type duplicates.
        sheets = list(set(sheets))
        
        output = {}
        
        for asheetname in sheets:
            if verbose:
                print("Reading sheet %s" % asheetname)
            
            if isinstance(asheetname, compat.string_types):
                sheet = self.book.sheet_by_name(asheetname)
            else:  # assume an integer if not a string    
                sheet = self.book.sheet_by_index(asheetname)   
            
            data = []
            should_parse = {}
            
            for i in range(sheet.nrows):
                row = []
                for j, (value, typ) in enumerate(zip(sheet.row_values(i),
                                                     sheet.row_types(i))):
                    if parse_cols is not None and j not in should_parse:
                        should_parse[j] = self._should_parse(j, parse_cols)
    
                    if parse_cols is None or should_parse[j]:
                        row.append(_parse_cell(value,typ))
                data.append(row)
    
            if header is not None:
                data[header] = _trim_excel_header(data[header])
    
            parser = TextParser(data, header=header, index_col=index_col,
                                has_index_names=has_index_names,
                                na_values=na_values,
                                thousands=thousands,
                                parse_dates=parse_dates,
                                date_parser=date_parser,
                                skiprows=skiprows,
                                skip_footer=skip_footer,
                                chunksize=chunksize,
                                **kwds)
            
            output[asheetname] = parser.read()
            
        if ret_dict:
            return output
        else:
            return output[asheetname]
示例#23
0
    def parse(
        self,
        sheet_name=0,
        header=0,
        names=None,
        index_col=None,
        usecols=None,
        squeeze=False,
        dtype: DtypeArg | None = None,
        true_values=None,
        false_values=None,
        skiprows=None,
        nrows=None,
        na_values=None,
        verbose=False,
        parse_dates=False,
        date_parser=None,
        thousands=None,
        comment=None,
        skipfooter=0,
        convert_float=None,
        mangle_dupe_cols=True,
        **kwds,
    ):

        if convert_float is None:
            convert_float = True
        else:
            stacklevel = find_stack_level()
            warnings.warn(
                "convert_float is deprecated and will be removed in a future version.",
                FutureWarning,
                stacklevel=stacklevel,
            )

        validate_header_arg(header)

        ret_dict = False

        # Keep sheetname to maintain backwards compatibility.
        if isinstance(sheet_name, list):
            sheets = sheet_name
            ret_dict = True
        elif sheet_name is None:
            sheets = self.sheet_names
            ret_dict = True
        else:
            sheets = [sheet_name]

        # handle same-type duplicates.
        sheets = list(dict.fromkeys(sheets).keys())

        output = {}

        for asheetname in sheets:
            if verbose:
                print(f"Reading sheet {asheetname}")

            if isinstance(asheetname, str):
                sheet = self.get_sheet_by_name(asheetname)
            else:  # assume an integer if not a string
                sheet = self.get_sheet_by_index(asheetname)

            data = self.get_sheet_data(sheet, convert_float)
            if hasattr(sheet, "close"):
                # pyxlsb opens two TemporaryFiles
                sheet.close()
            usecols = maybe_convert_usecols(usecols)

            if not data:
                output[asheetname] = DataFrame()
                continue

            if is_list_like(header) and len(header) == 1:
                header = header[0]

            # forward fill and pull out names for MultiIndex column
            header_names = None
            if header is not None and is_list_like(header):
                header_names = []
                control_row = [True] * len(data[0])

                for row in header:
                    if is_integer(skiprows):
                        row += skiprows

                    data[row], control_row = fill_mi_header(
                        data[row], control_row)

                    if index_col is not None:
                        header_name, _ = pop_header_name(data[row], index_col)
                        header_names.append(header_name)

            # If there is a MultiIndex header and an index then there is also
            # a row containing just the index name(s)
            has_index_names = (is_list_like(header) and len(header) > 1
                               and index_col is not None)

            if is_list_like(index_col):
                # Forward fill values for MultiIndex index.
                if header is None:
                    offset = 0
                elif not is_list_like(header):
                    offset = 1 + header
                else:
                    offset = 1 + max(header)

                # GH34673: if MultiIndex names present and not defined in the header,
                # offset needs to be incremented so that forward filling starts
                # from the first MI value instead of the name
                if has_index_names:
                    offset += 1

                # Check if we have an empty dataset
                # before trying to collect data.
                if offset < len(data):
                    for col in index_col:
                        last = data[offset][col]

                        for row in range(offset + 1, len(data)):
                            if data[row][col] == "" or data[row][col] is None:
                                data[row][col] = last
                            else:
                                last = data[row][col]

            # GH 12292 : error when read one empty column from excel file
            try:
                parser = TextParser(
                    data,
                    names=names,
                    header=header,
                    index_col=index_col,
                    has_index_names=has_index_names,
                    squeeze=squeeze,
                    dtype=dtype,
                    true_values=true_values,
                    false_values=false_values,
                    skiprows=skiprows,
                    nrows=nrows,
                    na_values=na_values,
                    skip_blank_lines=False,  # GH 39808
                    parse_dates=parse_dates,
                    date_parser=date_parser,
                    thousands=thousands,
                    comment=comment,
                    skipfooter=skipfooter,
                    usecols=usecols,
                    mangle_dupe_cols=mangle_dupe_cols,
                    **kwds,
                )

                output[asheetname] = parser.read(nrows=nrows)

                if not squeeze or isinstance(output[asheetname], DataFrame):
                    if header_names:
                        output[asheetname].columns = output[
                            asheetname].columns.set_names(header_names)

            except EmptyDataError:
                # No Data, return an empty DataFrame
                output[asheetname] = DataFrame()

        if ret_dict:
            return output
        else:
            return output[asheetname]
示例#24
0
    def _parse_excel(self,
                     sheetname=0,
                     header=0,
                     skiprows=None,
                     skip_footer=0,
                     index_col=None,
                     has_index_names=None,
                     parse_cols=None,
                     parse_dates=False,
                     date_parser=None,
                     na_values=None,
                     thousands=None,
                     chunksize=None,
                     convert_float=True,
                     **kwds):
        import xlrd
        from xlrd import (xldate, XL_CELL_DATE, XL_CELL_ERROR, XL_CELL_BOOLEAN,
                          XL_CELL_NUMBER)

        epoch1904 = self.book.datemode

        # xlrd >= 0.9.3 can return datetime objects directly.
        if LooseVersion(xlrd.__VERSION__) >= LooseVersion("0.9.3"):
            xlrd_0_9_3 = True
        else:
            xlrd_0_9_3 = False

        if isinstance(sheetname, compat.string_types):
            sheet = self.book.sheet_by_name(sheetname)
        else:  # assume an integer if not a string
            sheet = self.book.sheet_by_index(sheetname)

        data = []
        should_parse = {}
        for i in range(sheet.nrows):
            row = []
            for j, (value, typ) in enumerate(
                    zip(sheet.row_values(i), sheet.row_types(i))):
                if parse_cols is not None and j not in should_parse:
                    should_parse[j] = self._should_parse(j, parse_cols)

                if parse_cols is None or should_parse[j]:
                    if typ == XL_CELL_DATE:
                        if xlrd_0_9_3:
                            # Use the newer xlrd datetime handling.
                            value = xldate.xldate_as_datetime(value, epoch1904)

                            # Excel doesn't distinguish between dates and time,
                            # so we treat dates on the epoch as times only.
                            # Also, Excel supports 1900 and 1904 epochs.
                            year = (value.timetuple())[0:3]
                            if ((not epoch1904 and year == (1899, 12, 31))
                                    or (epoch1904 and year == (1904, 1, 1))):
                                value = datetime.time(value.hour, value.minute,
                                                      value.second,
                                                      value.microsecond)
                        else:
                            # Use the xlrd <= 0.9.2 date handling.
                            dt = xldate.xldate_as_tuple(value, epoch1904)

                            if dt[0] < datetime.MINYEAR:
                                value = datetime.time(*dt[3:])
                            else:
                                value = datetime.datetime(*dt)

                    elif typ == XL_CELL_ERROR:
                        value = np.nan
                    elif typ == XL_CELL_BOOLEAN:
                        value = bool(value)
                    elif convert_float and typ == XL_CELL_NUMBER:
                        # GH5394 - Excel 'numbers' are always floats
                        # it's a minimal perf hit and less suprising
                        val = int(value)
                        if val == value:
                            value = val

                    row.append(value)

            data.append(row)

        if header is not None:
            data[header] = _trim_excel_header(data[header])

        parser = TextParser(data,
                            header=header,
                            index_col=index_col,
                            has_index_names=has_index_names,
                            na_values=na_values,
                            thousands=thousands,
                            parse_dates=parse_dates,
                            date_parser=date_parser,
                            skiprows=skiprows,
                            skip_footer=skip_footer,
                            chunksize=chunksize,
                            **kwds)

        return parser.read()
示例#25
0
文件: parsers.py 项目: vfdev-5/modin
    def parse(fname, **kwargs):
        num_splits = kwargs.pop("num_splits", None)
        start = kwargs.pop("start", None)
        end = kwargs.pop("end", None)
        _skiprows = kwargs.pop("skiprows")
        excel_header = kwargs.get("_header")
        sheet_name = kwargs.get("sheet_name", 0)
        footer = b"</sheetData></worksheet>"

        # Default to pandas case, where we are not splitting or partitioning
        if start is None or end is None:
            return pandas.read_excel(fname, **kwargs)

        from zipfile import ZipFile
        from openpyxl import load_workbook
        from openpyxl.worksheet._reader import WorksheetReader
        from openpyxl.reader.excel import ExcelReader
        from openpyxl.worksheet.worksheet import Worksheet
        from pandas.core.dtypes.common import is_list_like
        from pandas.io.excel._util import (
            _fill_mi_header,
            _maybe_convert_usecols,
        )
        from pandas.io.parsers import TextParser
        import re

        wb = load_workbook(filename=fname, read_only=True)
        # Get shared strings
        ex = ExcelReader(fname, read_only=True)
        ex.read_manifest()
        ex.read_strings()
        # Convert string name 0 to string
        if sheet_name == 0:
            sheet_name = wb.sheetnames[sheet_name]
        # get the worksheet to use with the worksheet reader
        ws = Worksheet(wb)
        # Read the raw data
        with ZipFile(fname) as z:
            with z.open("xl/worksheets/{}.xml".format(
                    sheet_name.lower())) as file:
                file.seek(start)
                bytes_data = file.read(end - start)

        def update_row_nums(match):
            """Update the row numbers to start at 1.

            Note: This is needed because the parser we are using does not scale well if
            the row numbers remain because empty rows are inserted for all "missing"
            rows.

            Parameters
            ----------
            match
                The match from the origin `re.sub` looking for row number tags.

            Returns
            -------
            string
                The updated string with new row numbers.
            """
            b = match.group(0)
            return re.sub(
                b"\d+",  # noqa: W605
                lambda c: str(int(c.group(0).decode("utf-8")) - _skiprows).
                encode("utf-8"),
                b,
            )

        bytes_data = re.sub(b'r="[A-Z]*\d+"', update_row_nums,
                            bytes_data)  # noqa: W605
        bytesio = BytesIO(excel_header + bytes_data + footer)
        # Use openpyxl to read/parse sheet data
        reader = WorksheetReader(ws, bytesio, ex.shared_strings, False)
        # Attach cells to worksheet object
        reader.bind_cells()
        data = PandasExcelParser.get_sheet_data(
            ws, kwargs.pop("convert_float", True))
        usecols = _maybe_convert_usecols(kwargs.pop("usecols", None))
        header = kwargs.pop("header", 0)
        index_col = kwargs.pop("index_col", None)
        # skiprows is handled externally
        skiprows = None

        # Handle header and create MultiIndex for columns if necessary
        if is_list_like(header) and len(header) == 1:
            header = header[0]
        if header is not None and is_list_like(header):
            control_row = [True] * len(data[0])

            for row in header:
                data[row], control_row = _fill_mi_header(
                    data[row], control_row)
        # Handle MultiIndex for row Index if necessary
        if is_list_like(index_col):
            # Forward fill values for MultiIndex index.
            if not is_list_like(header):
                offset = 1 + header
            else:
                offset = 1 + max(header)

            # Check if dataset is empty
            if offset < len(data):
                for col in index_col:
                    last = data[offset][col]
                    for row in range(offset + 1, len(data)):
                        if data[row][col] == "" or data[row][col] is None:
                            data[row][col] = last
                        else:
                            last = data[row][col]

        parser = TextParser(data,
                            header=header,
                            index_col=index_col,
                            has_index_names=is_list_like(header)
                            and len(header) > 1,
                            skiprows=skiprows,
                            usecols=usecols,
                            **kwargs)
        # In excel if you create a row with only a border (no values), this parser will
        # interpret that as a row of NaN values. Pandas discards these values, so we
        # also must discard these values.
        pandas_df = parser.read().dropna(how="all")
        # Since we know the number of rows that occur before this partition, we can
        # correctly assign the index in cases of RangeIndex. If it is not a RangeIndex,
        # the index is already correct because it came from the data.
        if isinstance(pandas_df.index, pandas.RangeIndex):
            pandas_df.index = pandas.RangeIndex(start=_skiprows,
                                                stop=len(pandas_df.index) +
                                                _skiprows)
        # We return the length if it is a RangeIndex (common case) to reduce
        # serialization cost.
        if index_col is not None:
            index = pandas_df.index
        else:
            # The lengths will become the RangeIndex
            index = len(pandas_df)
        return _split_result_for_readers(1, num_splits, pandas_df) + [
            index,
            pandas_df.dtypes,
        ]
示例#26
0
文件: excel.py 项目: wudcwctw/pandas
    def _parse_excel(self, sheetname, header=0, skiprows=None, skip_footer=0,
                     index_col=None, has_index_names=None, parse_cols=None,
                     parse_dates=False, date_parser=None, na_values=None,
                     thousands=None, chunksize=None, convert_float=True,
                     **kwds):
        from xlrd import (xldate_as_tuple, XL_CELL_DATE,
                          XL_CELL_ERROR, XL_CELL_BOOLEAN,
                          XL_CELL_NUMBER)

        datemode = self.book.datemode
        if isinstance(sheetname, compat.string_types):
            sheet = self.book.sheet_by_name(sheetname)
        else:  # assume an integer if not a string
            sheet = self.book.sheet_by_index(sheetname)

        data = []
        should_parse = {}
        for i in range(sheet.nrows):
            row = []
            for j, (value, typ) in enumerate(zip(sheet.row_values(i),
                                                 sheet.row_types(i))):
                if parse_cols is not None and j not in should_parse:
                    should_parse[j] = self._should_parse(j, parse_cols)

                if parse_cols is None or should_parse[j]:
                    if typ == XL_CELL_DATE:
                        dt = xldate_as_tuple(value, datemode)
                        # how to produce this first case?
                        if dt[0] < datetime.MINYEAR:  # pragma: no cover
                            value = datetime.time(*dt[3:])
                        else:
                            value = datetime.datetime(*dt)
                    elif typ == XL_CELL_ERROR:
                        value = np.nan
                    elif typ == XL_CELL_BOOLEAN:
                        value = bool(value)
                    elif convert_float and typ == XL_CELL_NUMBER:
                        # GH5394 - Excel 'numbers' are always floats
                        # it's a minimal perf hit and less suprising
                        val = int(value)
                        if val == value:
                            value = val

                    row.append(value)

            data.append(row)

        if header is not None:
            data[header] = _trim_excel_header(data[header])

        parser = TextParser(data, header=header, index_col=index_col,
                            has_index_names=has_index_names,
                            na_values=na_values,
                            thousands=thousands,
                            parse_dates=parse_dates,
                            date_parser=date_parser,
                            skiprows=skiprows,
                            skip_footer=skip_footer,
                            chunksize=chunksize,
                            **kwds)

        return parser.read()
示例#27
0
文件: _base.py 项目: josham/pandas
    def parse(self,
              sheet_name=0,
              header=0,
              names=None,
              index_col=None,
              usecols=None,
              squeeze=False,
              dtype=None,
              true_values=None,
              false_values=None,
              skiprows=None,
              nrows=None,
              na_values=None,
              verbose=False,
              parse_dates=False,
              date_parser=None,
              thousands=None,
              comment=None,
              skipfooter=0,
              convert_float=True,
              mangle_dupe_cols=True,
              **kwds):

        _validate_header_arg(header)

        ret_dict = False

        # Keep sheetname to maintain backwards compatibility.
        if isinstance(sheet_name, list):
            sheets = sheet_name
            ret_dict = True
        elif sheet_name is None:
            sheets = self.sheet_names
            ret_dict = True
        else:
            sheets = [sheet_name]

        # handle same-type duplicates.
        sheets = list(OrderedDict.fromkeys(sheets).keys())

        output = OrderedDict()

        for asheetname in sheets:
            if verbose:
                print("Reading sheet {sheet}".format(sheet=asheetname))

            if isinstance(asheetname, compat.string_types):
                sheet = self.get_sheet_by_name(asheetname)
            else:  # assume an integer if not a string
                sheet = self.get_sheet_by_index(asheetname)

            data = self.get_sheet_data(sheet, convert_float)
            usecols = _maybe_convert_usecols(usecols)

            if sheet.nrows == 0:
                output[asheetname] = DataFrame()
                continue

            if is_list_like(header) and len(header) == 1:
                header = header[0]

            # forward fill and pull out names for MultiIndex column
            header_names = None
            if header is not None and is_list_like(header):
                header_names = []
                control_row = [True] * len(data[0])

                for row in header:
                    if is_integer(skiprows):
                        row += skiprows

                    data[row], control_row = _fill_mi_header(data[row],
                                                             control_row)

                    if index_col is not None:
                        header_name, _ = _pop_header_name(data[row], index_col)
                        header_names.append(header_name)

            if is_list_like(index_col):
                # Forward fill values for MultiIndex index.
                if not is_list_like(header):
                    offset = 1 + header
                else:
                    offset = 1 + max(header)

                # Check if we have an empty dataset
                # before trying to collect data.
                if offset < len(data):
                    for col in index_col:
                        last = data[offset][col]

                        for row in range(offset + 1, len(data)):
                            if data[row][col] == '' or data[row][col] is None:
                                data[row][col] = last
                            else:
                                last = data[row][col]

            has_index_names = is_list_like(header) and len(header) > 1

            # GH 12292 : error when read one empty column from excel file
            try:
                parser = TextParser(data,
                                    names=names,
                                    header=header,
                                    index_col=index_col,
                                    has_index_names=has_index_names,
                                    squeeze=squeeze,
                                    dtype=dtype,
                                    true_values=true_values,
                                    false_values=false_values,
                                    skiprows=skiprows,
                                    nrows=nrows,
                                    na_values=na_values,
                                    parse_dates=parse_dates,
                                    date_parser=date_parser,
                                    thousands=thousands,
                                    comment=comment,
                                    skipfooter=skipfooter,
                                    usecols=usecols,
                                    mangle_dupe_cols=mangle_dupe_cols,
                                    **kwds)

                output[asheetname] = parser.read(nrows=nrows)

                if not squeeze or isinstance(output[asheetname], DataFrame):
                    if header_names:
                        output[asheetname].columns = output[
                            asheetname].columns.set_names(header_names)
                    elif compat.PY2:
                        output[asheetname].columns = _maybe_convert_to_string(
                            output[asheetname].columns)

            except EmptyDataError:
                # No Data, return an empty DataFrame
                output[asheetname] = DataFrame()

        if ret_dict:
            return output
        else:
            return output[asheetname]