示例#1
0
文件: common.py 项目: Alias4bb/pandas
def _asarray_tuplesafe(values, dtype=None):
    from pandas.core.index import Index

    if not (isinstance(values, (list, tuple)) or hasattr(values, '__array__')):
        values = list(values)
    elif isinstance(values, Index):
        return values.values

    if isinstance(values, list) and dtype in [np.object_, object]:
        return lib.list_to_object_array(values)

    result = np.asarray(values, dtype=dtype)

    if issubclass(result.dtype.type, compat.string_types):
        result = np.asarray(values, dtype=object)

    if result.ndim == 2:
        if isinstance(values, list):
            return lib.list_to_object_array(values)
        else:
            # Making a 1D array that safely contains tuples is a bit tricky
            # in numpy, leading to the following
            try:
                result = np.empty(len(values), dtype=object)
                result[:] = values
            except ValueError:
                # we have a list-of-list
                result[:] = [tuple(x) for x in values]

    return result
示例#2
0
文件: common.py 项目: while/pandas
def _asarray_tuplesafe(values, dtype=None):
    from pandas.core.index import Index

    if not isinstance(values, (list, tuple, np.ndarray)):
        values = list(values)
    elif isinstance(values, Index):
        return values.values

    if isinstance(values, list) and dtype in [np.object_, object]:
        return lib.list_to_object_array(values)

    result = np.asarray(values, dtype=dtype)

    if issubclass(result.dtype.type, basestring):
        result = np.asarray(values, dtype=object)

    if result.ndim == 2:
        if isinstance(values, list):
            return lib.list_to_object_array(values)
        else:
            # Making a 1D array that safely contains tuples is a bit tricky
            # in numpy, leading to the following
            result = np.empty(len(values), dtype=object)
            result[:] = values

    return result
示例#3
0
def _asarray_tuplesafe(values, dtype=None):
    from pandas.core.index import Index

    if not (isinstance(values, (list, tuple)) or hasattr(values, '__array__')):
        values = list(values)
    elif isinstance(values, Index):
        return values.values

    if isinstance(values, list) and dtype in [np.object_, object]:
        return lib.list_to_object_array(values)

    result = np.asarray(values, dtype=dtype)

    if issubclass(result.dtype.type, compat.string_types):
        result = np.asarray(values, dtype=object)

    if result.ndim == 2:
        if isinstance(values, list):
            return lib.list_to_object_array(values)
        else:
            # Making a 1D array that safely contains tuples is a bit tricky
            # in numpy, leading to the following
            try:
                result = np.empty(len(values), dtype=object)
                result[:] = values
            except ValueError:
                # we have a list-of-list
                result[:] = [tuple(x) for x in values]

    return result
示例#4
0
def _asarray_tuplesafe(values, dtype=None):
    from pandas.core.index import Index

    if not isinstance(values, (list, tuple, np.ndarray)):
        values = list(values)
    elif isinstance(values, Index):
        return values.values

    if isinstance(values, list) and dtype in [np.object_, object]:
        return lib.list_to_object_array(values)

    result = np.asarray(values, dtype=dtype)

    if issubclass(result.dtype.type, basestring):
        result = np.asarray(values, dtype=object)

    if result.ndim == 2:
        if isinstance(values, list):
            return lib.list_to_object_array(values)
        else:
            # Making a 1D array that safely contains tuples is a bit tricky
            # in numpy, leading to the following
            result = np.empty(len(values), dtype=object)
            result[:] = values

    return result
示例#5
0
    def na_op(x, y):

        if com.is_categorical_dtype(x) != (not np.isscalar(y) and com.is_categorical_dtype(y)):
            msg = "Cannot compare a Categorical for op {op} with type {typ}. If you want to \n" \
                  "compare values, use 'series <op> np.asarray(cat)'."
            raise TypeError(msg.format(op=op,typ=type(y)))
        if x.dtype == np.object_:
            if isinstance(y, list):
                y = lib.list_to_object_array(y)

            if isinstance(y, (pa.Array, pd.Series)):
                if y.dtype != np.object_:
                    result = lib.vec_compare(x, y.astype(np.object_), op)
                else:
                    result = lib.vec_compare(x, y, op)
            else:
                result = lib.scalar_compare(x, y, op)
        else:

            try:
                result = getattr(x, name)(y)
                if result is NotImplemented:
                    raise TypeError("invalid type comparison")
            except (AttributeError):
                result = op(x, y)

        return result
示例#6
0
文件: ops.py 项目: agijsberts/pandas
    def na_op(x, y):
        try:
            result = op(x, y)
        except TypeError:
            if isinstance(y, list):
                y = lib.list_to_object_array(y)

            if isinstance(y, (np.ndarray, pd.Series)):
                if (is_bool_dtype(x.dtype) and is_bool_dtype(y.dtype)):
                    result = op(x, y)  # when would this be hit?
                else:
                    x = com._ensure_object(x)
                    y = com._ensure_object(y)
                    result = lib.vec_binop(x, y, op)
            else:
                try:

                    # let null fall thru
                    if not isnull(y):
                        y = bool(y)
                    result = lib.scalar_binop(x, y, op)
                except:
                    raise TypeError("cannot compare a dtyped [{0}] array with "
                                    "a scalar of type [{1}]".format(
                                        x.dtype, type(y).__name__))

        return result
示例#7
0
    def na_op(x, y):

        # dispatch to the categorical if we have a categorical
        # in either operand
        if com.is_categorical_dtype(x):
            return op(x, y)
        elif com.is_categorical_dtype(y) and not lib.isscalar(y):
            return op(y, x)

        if x.dtype == np.object_:
            if isinstance(y, list):
                y = lib.list_to_object_array(y)

            if isinstance(y, (np.ndarray, pd.Series)):
                if y.dtype != np.object_:
                    result = lib.vec_compare(x, y.astype(np.object_), op)
                else:
                    result = lib.vec_compare(x, y, op)
            else:
                result = lib.scalar_compare(x, y, op)
        else:

            try:
                result = getattr(x, name)(y)
                if result is NotImplemented:
                    raise TypeError("invalid type comparison")
            except (AttributeError):
                result = op(x, y)

        return result
示例#8
0
    def na_op(x, y):
        try:
            result = op(x, y)
        except TypeError:
            if isinstance(y, list):
                y = lib.list_to_object_array(y)

            if isinstance(y, (np.ndarray, pd.Series)):
                if (x.dtype == np.bool_
                        and y.dtype == np.bool_):  # pragma: no cover
                    result = op(x, y)  # when would this be hit?
                else:
                    x = com._ensure_object(x)
                    y = com._ensure_object(y)
                    result = lib.vec_binop(x, y, op)
            else:
                try:

                    # let null fall thru
                    if not isnull(y):
                        y = bool(y)
                    result = lib.scalar_binop(x, y, op)
                except:
                    raise TypeError("cannot compare a dtyped [{0}] array with "
                                    "a scalar of type [{1}]".format(
                                        x.dtype,
                                        type(y).__name__))

        return result
示例#9
0
    def na_op(x, y):
        if com.is_categorical_dtype(x) != com.is_categorical_dtype(y):
            msg = "Cannot compare a Categorical for op {op} with type {typ}. If you want to \n" \
                  "compare values, use 'series <op> np.asarray(cat)'."
            raise TypeError(msg.format(op=op, typ=type(y)))
        if x.dtype == np.object_:
            if isinstance(y, list):
                y = lib.list_to_object_array(y)

            if isinstance(y, (pa.Array, pd.Series)):
                if y.dtype != np.object_:
                    result = lib.vec_compare(x, y.astype(np.object_), op)
                else:
                    result = lib.vec_compare(x, y, op)
            else:
                result = lib.scalar_compare(x, y, op)
        else:

            try:
                result = getattr(x, name)(y)
                if result is NotImplemented:
                    raise TypeError("invalid type comparison")
            except (AttributeError):
                result = op(x, y)

        return result
示例#10
0
文件: ops.py 项目: ARF1/pandas
    def na_op(x, y):

        # dispatch to the categorical if we have a categorical
        # in either operand
        if com.is_categorical_dtype(x):
            return op(x,y)
        elif com.is_categorical_dtype(y) and not lib.isscalar(y):
            return op(y,x)

        if x.dtype == np.object_:
            if isinstance(y, list):
                y = lib.list_to_object_array(y)

            if isinstance(y, (np.ndarray, pd.Series)):
                if y.dtype != np.object_:
                    result = lib.vec_compare(x, y.astype(np.object_), op)
                else:
                    result = lib.vec_compare(x, y, op)
            else:
                result = lib.scalar_compare(x, y, op)
        else:

            try:
                result = getattr(x, name)(y)
                if result is NotImplemented:
                    raise TypeError("invalid type comparison")
            except (AttributeError):
                result = op(x, y)

        return result
示例#11
0
文件: cast.py 项目: uweschmitt/pandas
def _possibly_convert_platform(values):
    """ try to do platform conversion, allow ndarray or list here """

    if isinstance(values, (list, tuple)):
        values = lib.list_to_object_array(list(values))
    if getattr(values, 'dtype', None) == np.object_:
        if hasattr(values, '_values'):
            values = values._values
        values = lib.maybe_convert_objects(values)

    return values
示例#12
0
文件: cast.py 项目: DGrady/pandas
def _possibly_convert_platform(values):
    """ try to do platform conversion, allow ndarray or list here """

    if isinstance(values, (list, tuple)):
        values = lib.list_to_object_array(list(values))
    if getattr(values, 'dtype', None) == np.object_:
        if hasattr(values, '_values'):
            values = values._values
        values = lib.maybe_convert_objects(values)

    return values
示例#13
0
文件: ops.py 项目: ankravch/pandas
def _comp_method_OBJECT_ARRAY(op, x, y):
    if isinstance(y, list):
        y = lib.list_to_object_array(y)
    if isinstance(y, (np.ndarray, ABCSeries, ABCIndex)):
        if not is_object_dtype(y.dtype):
            y = y.astype(np.object_)

        if isinstance(y, (ABCSeries, ABCIndex)):
            y = y.values

        result = lib.vec_compare(x, y, op)
    else:
        result = lib.scalar_compare(x, y, op)
    return result
示例#14
0
文件: ops.py 项目: fish444555/pandas
    def na_op(x, y):
        if x.dtype == np.object_:
            if isinstance(y, list):
                y = lib.list_to_object_array(y)

            if isinstance(y, (pa.Array, pd.Series)):
                if y.dtype != np.object_:
                    result = lib.vec_compare(x, y.astype(np.object_), op)
                else:
                    result = lib.vec_compare(x, y, op)
            else:
                result = lib.scalar_compare(x, y, op)
        else:

            try:
                result = getattr(x,name)(y)
                if result is NotImplemented:
                    raise TypeError("invalid type comparison")
            except (AttributeError):
                result = op(x, y)

        return result
示例#15
0
    def na_op(x, y):
        if x.dtype == np.object_:
            if isinstance(y, list):
                y = lib.list_to_object_array(y)

            if isinstance(y, (pa.Array, pd.Series)):
                if y.dtype != np.object_:
                    result = lib.vec_compare(x, y.astype(np.object_), op)
                else:
                    result = lib.vec_compare(x, y, op)
            else:
                result = lib.scalar_compare(x, y, op)
        else:

            try:
                result = getattr(x, name)(y)
                if result is NotImplemented:
                    raise TypeError("invalid type comparison")
            except (AttributeError):
                result = op(x, y)

        return result
示例#16
0
文件: nanops.py 项目: afonit/pandas
def unique1d(values):
    """
    Hash table-based unique
    """
    if np.issubdtype(values.dtype, np.floating):
        table = lib.Float64HashTable(len(values))
        uniques = np.array(table.unique(com._ensure_float64(values)),
                           dtype=np.float64)
    elif np.issubdtype(values.dtype, np.datetime64):
        table = lib.Int64HashTable(len(values))
        uniques = np.array(table.unique(com._ensure_int64(values)),
                           dtype=np.int64)
        uniques = uniques.view('M8[ns]')
    elif np.issubdtype(values.dtype, np.integer):
        table = lib.Int64HashTable(len(values))
        uniques = np.array(table.unique(com._ensure_int64(values)),
                           dtype=np.int64)
    else:
        table = lib.PyObjectHashTable(len(values))
        uniques = table.unique(com._ensure_object(values))
        uniques = lib.list_to_object_array(uniques)
    return uniques
示例#17
0
文件: frame.py 项目: dragoljub/pandas
    def __getitem__(self, key):
        """
        Retrieve column or slice from DataFrame
        """
        try:
            # unsure about how kludgy this is
            s = self._series[key]
            s.name = key
            return s
        except (TypeError, KeyError):
            if isinstance(key, slice):
                date_rng = self.index[key]
                return self.reindex(date_rng)

            elif isinstance(key, (np.ndarray, list)):
                if isinstance(key, list):
                    key = lib.list_to_object_array(key)

                # also raises Exception if object array with NA values
                if com._is_bool_indexer(key):
                    key = np.asarray(key, dtype=bool)
                return self._getitem_array(key)
            else:  # pragma: no cover
                raise
示例#18
0
    def __getitem__(self, key):
        """
        Retrieve column or slice from DataFrame
        """
        try:
            # unsure about how kludgy this is
            s = self._series[key]
            s.name = key
            return s
        except (TypeError, KeyError):
            if isinstance(key, slice):
                date_rng = self.index[key]
                return self.reindex(date_rng)

            elif isinstance(key, (np.ndarray, list)):
                if isinstance(key, list):
                    key = lib.list_to_object_array(key)

                # also raises Exception if object array with NA values
                if com._is_bool_indexer(key):
                    key = np.asarray(key, dtype=bool)
                return self._getitem_array(key)
            else:  # pragma: no cover
                raise
示例#19
0
def _zip2(*args):
    return lib.list_to_object_array(zip(*args))
示例#20
0
文件: ops.py 项目: agijsberts/pandas
    def na_op(x, y):

        # dispatch to the categorical if we have a categorical
        # in either operand
        if is_categorical_dtype(x):
            return op(x,y)
        elif is_categorical_dtype(y) and not isscalar(y):
            return op(y,x)

        if is_object_dtype(x.dtype):
            if isinstance(y, list):
                y = lib.list_to_object_array(y)

            if isinstance(y, (np.ndarray, pd.Series)):
                if not is_object_dtype(y.dtype):
                    result = lib.vec_compare(x, y.astype(np.object_), op)
                else:
                    result = lib.vec_compare(x, y, op)
            else:
                result = lib.scalar_compare(x, y, op)
        else:

            # we want to compare like types
            # we only want to convert to integer like if
            # we are not NotImplemented, otherwise
            # we would allow datetime64 (but viewed as i8) against
            # integer comparisons
            if is_datetimelike_v_numeric(x, y):
                raise TypeError("invalid type comparison")

            # numpy does not like comparisons vs None
            if isscalar(y) and isnull(y):
                y = np.nan

            # we have a datetime/timedelta and may need to convert
            mask = None
            if needs_i8_conversion(x) or (not isscalar(y) and needs_i8_conversion(y)):

                if isscalar(y):
                    y = _index.convert_scalar(x,_values_from_object(y))
                else:
                    y = y.view('i8')

                if name == '__ne__':
                    mask = notnull(x)
                else:
                    mask = isnull(x)

                x = x.view('i8')

            try:
                result = getattr(x, name)(y)
                if result is NotImplemented:
                    raise TypeError("invalid type comparison")
            except AttributeError:
                result = op(x, y)

            if mask is not None and mask.any():
                result[mask] = False

        return result
示例#21
0
def _zip2(*args):
    return lib.list_to_object_array(lzip(*args))
示例#22
0
    def na_op(x, y):

        # dispatch to the categorical if we have a categorical
        # in either operand
        if is_categorical_dtype(x):
            return op(x,y)
        elif is_categorical_dtype(y) and not isscalar(y):
            return op(y,x)

        if is_object_dtype(x.dtype):
            if isinstance(y, list):
                y = lib.list_to_object_array(y)

            if isinstance(y, (np.ndarray, pd.Series)):
                if not is_object_dtype(y.dtype):
                    result = lib.vec_compare(x, y.astype(np.object_), op)
                else:
                    result = lib.vec_compare(x, y, op)
            else:
                result = lib.scalar_compare(x, y, op)
        else:

            # we want to compare like types
            # we only want to convert to integer like if
            # we are not NotImplemented, otherwise
            # we would allow datetime64 (but viewed as i8) against
            # integer comparisons
            if is_datetimelike_v_numeric(x, y):
                raise TypeError("invalid type comparison")

            # numpy does not like comparisons vs None
            if isscalar(y) and isnull(y):
                y = np.nan

            # we have a datetime/timedelta and may need to convert
            mask = None
            if needs_i8_conversion(x) or (not isscalar(y) and needs_i8_conversion(y)):

                if isscalar(y):
                    y = _index.convert_scalar(x,_values_from_object(y))
                else:
                    y = y.view('i8')

                if name == '__ne__':
                    mask = notnull(x)
                else:
                    mask = isnull(x)

                x = x.view('i8')

            try:
                result = getattr(x, name)(y)
                if result is NotImplemented:
                    raise TypeError("invalid type comparison")
            except AttributeError:
                result = op(x, y)

            if mask is not None and mask.any():
                result[mask] = False

        return result