def handler(grouped):
    se = grouped.set_index('saledate')['SalePrice'].sort_index()
    # se is the (ordered) time series of sales restricted to a single basket
    # we can now create a dataframe by combining different metrics
    conc = concat(
        {
            'MeanToDate': expanding_mean(se).shift(1).fillna(method='ffill'), # cumulative mean
            'MedianToDate': expanding_median(se).shift(1).fillna(method='ffill'), # cumulative mean
            'MaxToDate': se.cummax().shift(1).fillna(method='ffill'),         # cumulative max
            'MinToDate': se.cummin().shift(1).fillna(method='ffill'),         # cumulative max
            'PrevSale': se.shift(1).fillna(method='ffill'),          # previous sale
            'SaleCount': expanding_count(se) # cumulative count
        },
        axis=1
     )
    # bring back SalesID, needed for join
    se = grouped.set_index('saledate')['SalesID'].sort_index()
    conc['SalesID'] = se
    return conc
示例#2
0
 def test_expanding_count(self):
     result = mom.expanding_count(self.series)
     assert_almost_equal(result,
                         mom.rolling_count(self.series, len(self.series)))
示例#3
0
 def test_expanding_count(self):
     result = mom.expanding_count(self.series)
     assert_almost_equal(result, mom.rolling_count(self.series,
                                                   len(self.series)))