示例#1
0
    def scorePredictMethod(self):
        df = pd.read_csv("CveScore.csv", encoding='ISO-8859-1')
        df.head(5)
        df.dropna(subset=["baseScore"], inplace=True)
        random_state = 100
        kfold = model_selection.StratifiedKFold(n_splits=10)

        tfidf = TfidfVectorizer(sublinear_tf=True,
                                min_df=5,
                                norm='l2',
                                encoding='latin-1',
                                ngram_range=(1, 2),
                                stop_words='english')
        features = tfidf.fit_transform(df.description).toarray()
        labels = df.baseScore
        features.shape

        print(df.baseScore)

        X_train, X_test, y_train, y_test = train_test_split(df['description'],
                                                            df['baseScore'],
                                                            random_state=0)
        count_vect = CountVectorizer()
        X_train_counts = count_vect.fit_transform(X_train)
        tfidf_transformer = TfidfTransformer()
        X_train_tfidf = tfidf_transformer.fit_transform(X_train_counts)
        print(y_train)

        # RandomForestRegressor = ensemble.RandomForestRegressor(random_state=100, n_jobs=1, verbose=1, oob_score=True)
        # RandomForestRegressorAfterFit = RandomForestRegressor.fit(X_train_tfidf, y_train)

        #path = 'C:/Users/tahsin.asif/OneDrive - CYFIRMA INDIA PRIVATE LIMITED/AI/CveScorePrediction/'
        #joblib.dump(RandomForestRegressorAfterFit, os.path.join(path, 'regression_model-v4.pkl'))

        # cross check the dumped model with load
        classifier_loaded = joblib.load('regression_model-v4.pkl')
        inputData = input("Please enter the input text::")
        print(classifier_loaded.predict(count_vect.transform([inputData])))
        output = classifier_loaded.predict(count_vect.transform([inputData]))
        return output
示例#2
0
def predict():
    json_ = request.args.get('url')
    print('json:', json_)
    inputData = json_
    df = pd.read_csv(
        "CveScore.csv",
        encoding='ISO-8859-1')
    df.head(5)
    df.dropna(subset=["baseScore"], inplace=True)
    random_state = 100
    kfold = model_selection.StratifiedKFold(n_splits=10)

#     tfidf = TfidfVectorizer(sublinear_tf=True, min_df=5, norm='l2', encoding='latin-1', ngram_range=(1, 2),
#                             stop_words='english')
#     features = tfidf.fit_transform(df.description).toarray()
#     labels = df.baseScore
#     features.shape

    print(df.baseScore)

    X_train, X_test, y_train, y_test = train_test_split(df['description'], df['baseScore'], random_state=0)
    count_vect = CountVectorizer()
    X_train_counts = count_vect.fit_transform(X_train)
    tfidf_transformer = TfidfTransformer()
    X_train_tfidf = tfidf_transformer.fit_transform(X_train_counts)
    print(y_train)

    # RandomForestRegressor = ensemble.RandomForestRegressor(random_state=100, n_jobs=1, verbose=1, oob_score=True)
    # RandomForestRegressorAfterFit = RandomForestRegressor.fit(X_train_tfidf, y_train)

    # path = '............../AI/CveScorePrediction/'
    # joblib.dump(RandomForestRegressorAfterFit, os.path.join(path, 'regression_model-v4.pkl'))

    # cross check the dumped model with load
    classifier_loaded = joblib.load('regression_model-v4.pkl')
    #inputData = input("Please enter the input text::")
    print(classifier_loaded.predict(count_vect.transform([json_])))
    output = classifier_loaded.predict(count_vect.transform([json_]))
    return render_template('index.html', prediction_text='Predicted CVE SCore is {}'.format(output))
示例#3
0
from pandas.tests.groupby.test_value_counts import df

df.head(5)