示例#1
0
from pandas import DataFrame as f
import numpy as np
import random
item = ['Onion', 'Sugar', 'Potato', 'Carrot'] * 5
place = ['Delhi'] * 4 + ['Bhopal'] * 4 + ['Bangalore'] * 4 + [
    'Kolkata'
] * 4 + ['Mumbai'] * 4
total = random.sample(range(10, 50), 20)
df = f({'Item': item, 'Place': place, 'Total': total})
print df, "\n\n"
while True:
    x = input(
        "\n1.Display Itemwise Rank \n2.Display Itemwise Rank \n3.Exit\n>")
    if x == 1:
        it = raw_input("Enter the item Name : ")
        il = df[df['Item'] == it]
        il = il.copy()
        tol = il['Total']
        rank = tol.rank(ascending=False)
        il['Rank'] = rank
        print il
    elif x == 2:
        p = raw_input("Enter the place Name : ")
        pl = df[df['Place'] == p]
        pl = pl.copy()
        tol = pl['Total']
        rank = tol.rank(ascending=False)
        pl['Rank'] = rank
        print pl
    else:
        break
示例#2
0
#!/usr/bin/python
from pandas import Series as s
from pandas import DataFrame as f
import pandas as pd
import numpy as np
from matplotlib import pyplot as plt
fsales = f(np.random.randint(1, 100, 20).reshape(5, 4))
fsales.index = 'apple orange grapes mango banana'.split()
fsales.columns = 'Jan Feb Mar Apr'.split()
so = fsales.plot(kind='bar', rot=45)
print fsales
plt.show()
示例#3
0
import pandas as pd

from pandas import DataFrame as f

c = pd.read_csv('emp.csv')

ef1 = f(c)

ef1

a = ef1['ephno']

ef2 = f(a)

ef1 = ef1[['ename', 'eno', 'edesig', 'esalary']]

ef1
示例#4
0
import pandas as pd
import numpy as np
from pandas import DataFrame as f
from pandas import Series as s

#Question 1  Create a (4,4)2D array  consisting of integers.
a = np.array(range(1, 17)).reshape(4, 4)

#Question 2  Create a masked array from the above array by making numbers which are divisible by 3 as invalid values.
mska = np.ma.masked_array(a, mask=a % 3 == 0)
print mska.mask, "\n"

#Question 3  Create a dataframe from the above masked array.
dfma = f(mska)
print dfma, "\n"

#Question 4  Create a series of your own choice and do reindexing by exploring ffill,bfill,nearest etc
s1 = s(range(4), index=list("abcd"))
print s1, "\n"
print s1.reindex(list("abcde")), "\n"
print s1.reindex(list("abcde"), method="ffill"), "\n"
print s1.reindex(list("abcde"), method="bfill"), "\n"
#print s1.reindex(list("abecd"),method="nearest"),"\n"

#Question 5  Create a Dataframe object of your own choice and do reindexing.
ad = np.arange(1, 10).reshape(3, 3)
df1 = f(ad, columns=list("abc"), index=list("xyz"))
print df1, "\n"
print df1.reindex(list("yzx")), "\n"

#Question 6  Create a dataframe object from the above array by making c1,c2,c3,c4 as column indices and r1,r2,r3,r4 as row indices.
示例#5
0
print(b)
'''

#--------------------------------------------------

import numpy as np
import pandas as pd
from pandas import DataFrame as f
global d

d = {'Item':['a','b','c','e'],\
    'Place':['MH','KL','JK','TN'],\
    'Total sale':[100,200,500,300]}

global df
df = f(d)


def ItemWise():

    print(df)
    p = input('enter a item name :')

    for i, j in zip(df.index, df['Item']):
        if j == p:
            print('Place Wise rank of ', p, ' is ', df.rank()['Place'][i])


def placeWise():
    print(df)
    q = input('enter a place name: ')
示例#6
0
import pandas as pd
from pandas import DataFrame as f
import numpy as np
df = f(np.random.randint(10, 20, 40).reshape(10, 4),
       columns="c1 c2 c3 c4".split())
print df
print df.sort_values(['c1', 'c3'], ascending=[True, False])