def clear_config(): """ Restore the configuration to default """ config.clear()
def __init__( self, df: Optional[pd.DataFrame] = None, minimal: bool = False, explorative: bool = False, sensitive: bool = False, dark_mode: bool = False, orange_mode: bool = False, sample: Optional[dict] = None, config_file: Union[Path, str] = None, lazy: bool = True, typeset: Optional[VisionsTypeset] = None, summarizer: Optional[BaseSummarizer] = None, **kwargs, ): """Generate a ProfileReport based on a pandas DataFrame Args: df: the pandas DataFrame minimal: minimal mode is a default configuration with minimal computation config_file: a config file (.yml), mutually exclusive with `minimal` lazy: compute when needed sample: optional dict(name="Sample title", caption="Caption", data=pd.DataFrame()) typeset: optional user typeset to use for type inference summarizer: optional user summarizer to generate custom summary output **kwargs: other arguments, for valid arguments, check the default configuration file. """ config.clear() # to reset (previous) config. if config_file is not None and minimal: raise ValueError( "Arguments `config_file` and `minimal` are mutually exclusive." ) if df is None and not lazy: raise ValueError("Can init a not-lazy ProfileReport with no DataFrame") if config_file: config.set_file(config_file) elif minimal: config.set_file(get_config("config_minimal.yaml")) elif not config.is_default: pass # warnings.warn( # "Currently configuration is not the default, if you want to restore " # "default configuration, please run 'pandas_profiling.clear_config()'" # ) if explorative: config.set_arg_group("explorative") if sensitive: config.set_arg_group("sensitive") if dark_mode: config.set_arg_group("dark_mode") if orange_mode: config.set_arg_group("orange_mode") config.set_kwargs(kwargs) self.df = None self._df_hash = -1 self._description_set = None self._sample = sample self._title = None self._report = None self._html = None self._widgets = None self._json = None self._typeset = typeset self._summarizer = summarizer if df is not None: # preprocess df self.df = self.preprocess(df) if not lazy: # Trigger building the report structure _ = self.report