def clear_config():
     """
     Restore the configuration to default
     """
     config.clear()
示例#2
0
    def __init__(
        self,
        df: Optional[pd.DataFrame] = None,
        minimal: bool = False,
        explorative: bool = False,
        sensitive: bool = False,
        dark_mode: bool = False,
        orange_mode: bool = False,
        sample: Optional[dict] = None,
        config_file: Union[Path, str] = None,
        lazy: bool = True,
        typeset: Optional[VisionsTypeset] = None,
        summarizer: Optional[BaseSummarizer] = None,
        **kwargs,
    ):
        """Generate a ProfileReport based on a pandas DataFrame

        Args:
            df: the pandas DataFrame
            minimal: minimal mode is a default configuration with minimal computation
            config_file: a config file (.yml), mutually exclusive with `minimal`
            lazy: compute when needed
            sample: optional dict(name="Sample title", caption="Caption", data=pd.DataFrame())
            typeset: optional user typeset to use for type inference
            summarizer: optional user summarizer to generate custom summary output
            **kwargs: other arguments, for valid arguments, check the default configuration file.
        """
        config.clear()  # to reset (previous) config.
        if config_file is not None and minimal:
            raise ValueError(
                "Arguments `config_file` and `minimal` are mutually exclusive."
            )

        if df is None and not lazy:
            raise ValueError("Can init a not-lazy ProfileReport with no DataFrame")

        if config_file:
            config.set_file(config_file)
        elif minimal:
            config.set_file(get_config("config_minimal.yaml"))
        elif not config.is_default:
            pass
            # warnings.warn(
            #     "Currently configuration is not the default, if you want to restore "
            #     "default configuration, please run 'pandas_profiling.clear_config()'"
            # )
        if explorative:
            config.set_arg_group("explorative")
        if sensitive:
            config.set_arg_group("sensitive")
        if dark_mode:
            config.set_arg_group("dark_mode")
        if orange_mode:
            config.set_arg_group("orange_mode")

        config.set_kwargs(kwargs)

        self.df = None
        self._df_hash = -1
        self._description_set = None
        self._sample = sample
        self._title = None
        self._report = None
        self._html = None
        self._widgets = None
        self._json = None
        self._typeset = typeset
        self._summarizer = summarizer

        if df is not None:
            # preprocess df
            self.df = self.preprocess(df)

        if not lazy:
            # Trigger building the report structure
            _ = self.report