示例#1
0
def extreme_obs_table(freqtable, number_to_print, n, ascending=True) -> str:
    """Similar to the frequency table, for extreme observations.

    Args:
      freqtable: The frequency table.
      number_to_print: The number of observations to print.
      n: The total number of observations.
      ascending: The ordering of the observations (Default value = True)

    Returns:
        The HTML rendering of the extreme observation table.
    """
    # If it's mixed between base types (str, int) convert to str. Pure "mixed" types are filtered during type
    # discovery
    if "mixed" in freqtable.index.inferred_type:
        freqtable.index = freqtable.index.astype(str)

    sorted_freqtable = freqtable.sort_index(ascending=ascending)
    obs_to_print = sorted_freqtable.iloc[:number_to_print]
    max_freq = max(obs_to_print.values)

    rows = []
    for label, freq in obs_to_print.items():
        rows.append({
            "label": label,
            "width": freq / max_freq if max_freq != 0 else 0,
            "count": freq,
            "percentage": float(freq) / n,
            "extra_class": "",
        })

    return templates.template("freq_table.html").render(rows=rows)
示例#2
0
def to_html(sample: dict, stats_object: dict) -> str:
    """Generate a HTML report from summary statistics and a given sample.

    Args:
      sample: A dict containing the samples to print.
      stats_object: Statistics to use for the overview, variables, correlations and missing values.

    Returns:
      The profile report in HTML format
    """

    if not isinstance(sample, dict):
        raise TypeError("sample must be of type dict")

    if not isinstance(stats_object, dict):
        raise TypeError(
            "stats_object must be of type dict. Did you generate this using the "
            "pandas_profiling.describe() function?")

    if not {"table", "variables", "correlations"}.issubset(
            set(stats_object.keys())):
        raise TypeError(
            "stats_object badly formatted. Did you generate this using the pandas_profiling.describe() function?"
        )

    sections = [
        {
            "title": "Overview",
            "anchor_id": "overview",
            "content": render_overview_section(stats_object),
        },
        {
            "title": "Variables",
            "anchor_id": "variables",
            "content": render_variables_section(stats_object),
        },
        {
            "title": "Correlations",
            "anchor_id": "correlations",
            "content": render_correlations_section(stats_object),
        },
        {
            "title": "Missing values",
            "anchor_id": "missing",
            "content": render_missing_section(stats_object),
        },
        {
            "title": "Sample",
            "anchor_id": "sample",
            "content": render_sample_section(sample),
        },
    ]

    return templates.template("base.html").render(
        sections=sections, full_width=config["style"]["full_width"].get(bool))
示例#3
0
def render_missing_section(stats_object: dict) -> str:
    """Render the missing values HTML.

    Args:
        stats_object: The diagrams with missing values.

    Returns:
        The missing values component HTML.
    """
    return templates.template("components/tabs.html").render(
        values=stats_object["missing"], anchor_id="missing")
示例#4
0
def render_sample_section(sample: dict) -> str:
    """Render the sample HTML

    Args:
        sample: A dict containing samples from the dataset to print.

    Returns:
        The HTML rendering of the samples.
    """
    items = get_sample_items(sample)

    return templates.template("components/list.html").render(values=items)
示例#5
0
def render_correlations_section(stats_object: dict) -> str:
    """Render the correlations HTML.

    Args:
        stats_object: The diagrams to display in the correlation component.

    Returns:
        The rendered HTML of the correlations component of the profile.
    """
    items = get_correlation_items(stats_object)

    return templates.template("components/tabs.html").render(
        values=items, anchor_id="correlations")
示例#6
0
def render_overview_section(stats_object: dict) -> str:
    """Render the overview HTML.

    Args:
        stats_object: The statistics to display in the overview.

    Returns:
        The rendered HTML for the overview component of the profile.
    """
    return templates.template("overview.html").render(
        values=stats_object["table"],
        messages=stats_object["messages"],
        variables=stats_object["variables"],
        MessageType=MessageType,
    )
示例#7
0
    def to_html(self) -> str:
        """Generate and return complete template as lengthy string
            for using with frameworks.

        Returns:
            Profiling report html including wrapper.
        
        """
        return templates.template("wrapper.html").render(
            content=self.html,
            title=self.title,
            correlation=len(self.description_set["correlations"]) > 0,
            missing=len(self.description_set["missing"]) > 0,
            sample=len(self.sample) > 0,
            version=__version__,
            offline=self.use_local_assets,
            primary_color=config["style"]["primary_color"].get(str),
            theme=config["style"]["theme"].get(str),
        )
示例#8
0
def render_variables_section(stats_object: dict) -> str:
    """Render the HTML for each of the variables in the DataFrame.

    Args:
        stats_object: The statistics for each variable.

    Returns:
        The rendered HTML, where each row represents a variable.
    """
    rows_html = u""

    n_obs_unique = config["n_obs_unique"].get(int)
    n_obs_bool = config["n_obs_bool"].get(int)
    n_extreme_obs = config["n_extreme_obs"].get(int)
    n_freq_table_max = config["n_freq_table_max"].get(int)

    messages = stats_object["messages"]

    # TODO: move to for loop in template
    for idx, row in stats_object["variables"].items():
        formatted_values = row
        formatted_values.update({
            "varname": idx,
            "varid": hash(idx),
            "row_classes": {}
        })

        # TODO: obtain from messages (ignore)
        for m in messages:
            if m.column_name == idx:
                if m.message_type == MessageType.SKEWED:
                    formatted_values["row_classes"]["skewness"] = "alert"
                elif m.message_type == MessageType.HIGH_CARDINALITY:
                    # TODO: rename alert to prevent overlap with bootstrap classes
                    formatted_values["row_classes"]["distinct_count"] = "alert"
                elif m.message_type == MessageType.ZEROS:
                    formatted_values["row_classes"]["zeros"] = "alert"
                elif m.message_type == MessageType.MISSING:
                    formatted_values["row_classes"]["missing"] = "alert"

        if row["type"] in {Variable.TYPE_NUM, Variable.TYPE_DATE}:
            formatted_values["histogram"] = histogram(row["histogramdata"],
                                                      row,
                                                      row["histogram_bins"])
            formatted_values["mini_histogram"] = mini_histogram(
                row["histogramdata"], row, row["histogram_bins"])

            if ("histogram_bins_bayesian_blocks" in row
                    and row["type"] == Variable.TYPE_NUM):
                formatted_values["histogram_bayesian_blocks"] = histogram(
                    row["histogramdata"], row,
                    row["histogram_bins_bayesian_blocks"])

        if row["type"] in {Variable.TYPE_CAT, Variable.TYPE_BOOL}:
            # The number of column to use in the display of the frequency table according to the category
            mini_freq_table_nb_col = {
                Variable.TYPE_CAT: 6,
                Variable.TYPE_BOOL: 3
            }

            formatted_values["minifreqtable"] = freq_table(
                stats_object["variables"][idx]["value_counts_without_nan"],
                stats_object["table"]["n"],
                "mini_freq_table.html",
                max_number_to_print=n_obs_bool,
                idx=idx,
                nb_col=mini_freq_table_nb_col[row["type"]],
            )

        if row["type"] in {Variable.TYPE_URL}:
            keys = ["scheme", "netloc", "path", "query", "fragment"]
            for url_part in keys:
                formatted_values["freqtable_{}".format(url_part)] = freq_table(
                    freqtable=stats_object["variables"][idx][
                        "{}_counts".format(url_part)],
                    # TODO: n - missing
                    n=stats_object["table"]["n"],
                    table_template="freq_table.html",
                    idx=idx,
                    max_number_to_print=n_freq_table_max,
                )

        if row["type"] in {Variable.TYPE_PATH}:
            keys = ["name", "parent", "suffix", "stem"]
            for path_part in keys:
                formatted_values["freqtable_{}".format(
                    path_part)] = freq_table(
                        freqtable=stats_object["variables"][idx][
                            "{}_counts".format(path_part)],
                        # TODO: n - missing
                        n=stats_object["table"]["n"],
                        table_template="freq_table.html",
                        idx=idx,
                        max_number_to_print=n_freq_table_max,
                    )

        if row["type"] == Variable.S_TYPE_UNIQUE:
            table = stats_object["variables"][idx][
                "value_counts_without_nan"].sort_index()
            obs = table.index

            formatted_values["firstn"] = pd.DataFrame(
                list(obs[0:n_obs_unique]),
                columns=["First {} values".format(n_obs_unique)],
            ).to_html(classes="example_values", index=False)
            formatted_values["lastn"] = pd.DataFrame(
                list(obs[-n_obs_unique:]),
                columns=["Last {} values".format(n_obs_unique)],
            ).to_html(classes="example_values", index=False)

        if row["type"] not in {
                Variable.S_TYPE_UNSUPPORTED,
                Variable.S_TYPE_CORR,
                Variable.S_TYPE_CONST,
                Variable.S_TYPE_RECODED,
        }:
            formatted_values["freqtable"] = freq_table(
                freqtable=stats_object["variables"][idx]
                ["value_counts_without_nan"],
                n=stats_object["table"]["n"],
                table_template="freq_table.html",
                idx=idx,
                max_number_to_print=n_freq_table_max,
            )

            formatted_values["n_extreme_obs"] = n_extreme_obs
            formatted_values["firstn_expanded"] = extreme_obs_table(
                freqtable=stats_object["variables"][idx]
                ["value_counts_without_nan"],
                number_to_print=n_extreme_obs,
                n=stats_object["table"]["n"],
                ascending=True,
            )
            formatted_values["lastn_expanded"] = extreme_obs_table(
                freqtable=stats_object["variables"][idx]
                ["value_counts_without_nan"],
                number_to_print=n_extreme_obs,
                n=stats_object["table"]["n"],
                ascending=False,
            )

        if row["type"] == Variable.TYPE_NUM:
            formatted_values["sections"] = {
                "statistics": {
                    "name":
                    "Statistics",
                    "content":
                    templates.template("variables/row_num_statistics.html").
                    render(values=formatted_values),
                },
                "histogram": {
                    "name":
                    "Histogram",
                    "content":
                    templates.template("variables/row_num_histogram.html").
                    render(values=formatted_values),
                },
                "frequency_table": {
                    "name":
                    "Common values",
                    "content":
                    templates.template("variables/row_num_frequency_table.html"
                                       ).render(values=formatted_values),
                },
                "extreme_values": {
                    "name":
                    "Extreme values",
                    "content":
                    templates.template("variables/row_num_extreme_values.html"
                                       ).render(values=formatted_values),
                },
            }

        if row["type"] == Variable.TYPE_CAT:
            formatted_values["sections"] = {
                "frequency_table": {
                    "name":
                    "Common values",
                    "content":
                    templates.template("variables/row_cat_frequency_table.html"
                                       ).render(values=formatted_values),
                }
            }

            check_compositions = config["vars"]["cat"][
                "check_composition"].get(bool)
            if check_compositions:
                formatted_values["sections"]["composition"] = {
                    "name":
                    "Composition",
                    "content":
                    templates.template("variables/row_cat_composition.html").
                    render(values=formatted_values),
                }

        if row["type"] == Variable.TYPE_URL:
            formatted_values["sections"] = {
                "full": {
                    "name": "Full",
                    "value": formatted_values["freqtable"]
                },
                "scheme": {
                    "name": "Scheme",
                    "value": formatted_values["freqtable_scheme"],
                },
                "netloc": {
                    "name": "Netloc",
                    "value": formatted_values["freqtable_netloc"],
                },
                "path": {
                    "name": "Path",
                    "value": formatted_values["freqtable_path"]
                },
                "query": {
                    "name": "Query",
                    "value": formatted_values["freqtable_query"],
                },
                "fragment": {
                    "name": "Fragment",
                    "value": formatted_values["freqtable_fragment"],
                },
            }

        if row["type"] == Variable.TYPE_PATH:
            formatted_values["sections"] = {
                "full": {
                    "name": "Full",
                    "value": formatted_values["freqtable"]
                },
                "stem": {
                    "name": "Stem",
                    "value": formatted_values["freqtable_stem"]
                },
                "name": {
                    "name": "Name",
                    "value": formatted_values["freqtable_name"]
                },
                "suffix": {
                    "name": "Suffix",
                    "value": formatted_values["freqtable_suffix"],
                },
                "parent": {
                    "name": "Parent",
                    "value": formatted_values["freqtable_parent"],
                },
            }

        rows_html += templates.template("variables/row_{}.html".format(
            row["type"].value.lower())).render(values=formatted_values)
    return rows_html
示例#9
0
def freq_table(freqtable,
               n: int,
               table_template,
               max_number_to_print: int,
               idx: int,
               nb_col=6) -> str:
    """Render the HTML for a frequency table (value, count).

    Args:
      idx: The variable id.
      freqtable: The frequency table.
      n: The total number of values.
      table_template: The name of the template.
      max_number_to_print: The maximum number of observations to print.
      nb_col: The number of columns in the grid. (Default value = 6)

    Returns:
        The HTML representation of the frequency table.
    """

    if max_number_to_print > n:
        max_number_to_print = n

    if max_number_to_print < len(freqtable):
        freq_other = sum(freqtable.iloc[max_number_to_print:])
        min_freq = freqtable.values[max_number_to_print]
    else:
        freq_other = 0
        min_freq = 0

    freq_missing = n - sum(freqtable)
    max_freq = max(freqtable.values[0], freq_other, freq_missing)

    # TODO: Correctly sort missing and other
    if max_freq == 0:
        raise ValueError("Empty column")

    rows = []
    for label, freq in freqtable.iloc[0:max_number_to_print].items():
        rows.append({
            "label": label,
            "width": freq / max_freq,
            "count": freq,
            "percentage": float(freq) / n,
            "extra_class": "",
        })

    if freq_other > min_freq:
        rows.append({
            "label":
            "Other values ({})".format(
                str(freqtable.count() - max_number_to_print)),
            "width":
            freq_other / max_freq,
            "count":
            freq_other,
            "percentage":
            float(freq_other) / n,
            "extra_class":
            "other",
        })

    if freq_missing > min_freq:
        rows.append({
            "label": "(Missing)",
            "width": freq_missing / max_freq,
            "count": freq_missing,
            "percentage": float(freq_missing) / n,
            "extra_class": "missing",
        })

    return templates.template(table_template).render(rows=rows,
                                                     varid=hash(idx),
                                                     nb_col=nb_col)