示例#1
0
    def joukowsky(cls, m=-0.1+0.1j, numpoints=100):
        from paraBEM.airfoil.conformal_mapping import JoukowskyAirfoil
        airfoil = JoukowskyAirfoil(m)
        profile = [[c.real, c.imag] for c in airfoil.coordinates(numpoints)]

        # find the smallest xvalue to reset the nose
        x = numpy.array([i[0] for i in profile])
        profile = cls(profile, "joukowsky_" + str(m))
        profile.normalize(numpy.where(x == min(x))[0][0])
        profile.normalize()
        profile.numpoints = numpoints
        return profile
示例#2
0
    def joukowsky(cls, m=-0.1 + 0.1j, numpoints=100):
        from paraBEM.airfoil.conformal_mapping import JoukowskyAirfoil
        airfoil = JoukowskyAirfoil(m)
        profile = [[c.real, c.imag] for c in airfoil.coordinates(numpoints)]

        # find the smallest xvalue to reset the nose
        x = numpy.array([i[0] for i in profile])
        profile = cls(profile, "joukowsky_" + str(m))
        profile.normalize(numpy.where(x == min(x))[0][0])
        profile.normalize()
        profile.numpoints = numpoints
        return profile
示例#3
0
from paraBEM.airfoil.conformal_mapping import JoukowskyAirfoil
from paraBEM.vtk_export import VtkWriter
from paraBEM.utils import check_path

####################################################
#      analytic solution of joukowsky-airfoils     #
####################################################

# -inputparameter for the joukowsky airfoil
midpoint = -0.2 + 0.0j  # m is the complex mid point of a circle passing (1 + 0j)
alpha = np.deg2rad(10)  # alpha is the angle of attack in rad
num_x = 300             # number of plot-points in x-direction
num_y = 300             # number of plot-points in y-direction

# -create joukowsky object
airfoil = JoukowskyAirfoil(midpoint)

# -helper functions


def complex_to_3vec(z):
    return [z.real, z.imag, 0]


def zeta_velocity(z):
    vel = airfoil.velocity(z, alpha)
    return [vel.real, -vel.imag, 0.]


def z_velocity(z):
    vel = airfoil.z_velocity(z, alpha)