示例#1
0
def corrSuitabilityMaps():
    #### Script to find corelation between suitbility maps
    for country in case_studies:
        suitDir = os.path.join(os.getcwd(), 'results', 'figures',
                               'suitability_maps')
        workDir = parameters.getWorkDir()
        resultFolder = os.path.join(workDir, 'results', country, 'metrics')
        fig_dir = os.path.join(os.getcwd(), 'results', 'figures')

        pointFile = 'sampPointNr.col'
        pointDir = os.path.join(os.getcwd(), 'input_data', country, pointFile)
        file_list = os.listdir(suitDir)
        file_list = [x for x in file_list if x.startswith(country)]
        maps = [
            os.path.join(os.getcwd(), 'results', 'figures', 'suitability_maps',
                         f) for f in file_list
        ]
        maps_pairs = [(file_list[i], file_list[j])
                      for i in range(len(file_list))
                      for j in range(i + 1, len(file_list))]
        maps_pairs = [(x[8:], y[8:]) for x, y in maps_pairs]

        arrays = []
        for a_map in maps:
            arrays.append(metrics.map2Array(a_map, pointDir))

        pairs = [(arrays[i], arrays[j]) for i in range(len(arrays))
                 for j in range(i + 1, len(arrays))]

        for i, pair in enumerate(pairs):
            # Check for NaNs
            mask = np.isnan(pair[0]) | np.isnan(pair[1])
            # Mask, to remove NaNs
            x = pair[0][~mask]
            y = pair[1][~mask]

            print(x.shape, y.shape)
            print(np.corrcoef(x, y))

            # Plot
            plt.scatter(x, y, s=0.1)
            a_string = 'correlation coefficient between '+\
                       maps_pairs[i][0]+' and '+maps_pairs[i][1]+': '+str(np.corrcoef(x,y)[0,1])
            plt.title(a_string)

            plt.xlabel(maps_pairs[i][0])
            plt.ylabel(maps_pairs[i][1])

            aPath = os.path.join(
                fig_dir,
                country + '_' + maps_pairs[i][0] + '_' + maps_pairs[i][1])
            plt.savefig(os.path.join(resultFolder, aPath))
            plt.close('all')
        print(country, 'done')
# -*- coding: cp1252 -*-
import pickle
import os
import metrics
import numpy as np
import parameters
import calibrate
from pcraster.framework import *

#### Script to read in the metrics saved as the result of the LU_urb.py script.
#### Metrics are transformed into an array

# Work directory:
work_dir = parameters.getWorkDir()

# Get metrics
metricNames = parameters.getSumStats()

# Get the number of parameter iterations and number of time step defined in the parameter.py script
nrOfTimesteps = parameters.getNrTimesteps()
numberOfIterations = parameters.getNumberofIterations()
iterations = range(1, numberOfIterations + 1, 1)
timeSteps = range(1, nrOfTimesteps + 1, 1)

# Get the observed time steps. Time steps relate to the year of the CLC data, where 1990 was time step 0.
obsSampleNumbers = [1]  #range(1,20+1,1) <- for stochastic model
obsTimeSteps = parameters.getObsTimesteps()
# Read the reference files
refArray = parameters.getColFiles()

# Path to the folder with the metrics stored