# -*- coding: utf-8 -*- """ Created on Fri Sep 30 14:56:51 2016 @author: txia retrieve log file from log server """ import os, sys import params as ps from datetime import datetime import connectors param = ps.Parameters() class DataSourceRetriever(): def copy_files_from_remote_to_local(self, source, destination): #use scp to copy the file 'source' to destination sshconnector = connectors.SSHConnector(param) sshconnector.createSCPClient() sshconnector.scp(source, destination) sshconnector.close() def execute(self): print 'execute starts.' start_time = datetime.time() print 'execute ends.' end_time = datetime.time()
# -*- coding: utf-8 -*- """ Created on Fri Sep 23 07:20:09 2016 @author: txia functions """ from datetime import datetime import pandas as pd import params import json ##### functions for blob p = params.Parameters() tableIATA = pd.read_csv(filepath_or_buffer=p.path_IATAinfo, header=None, names=p.fields_IATAinfo) # table of property information that found in blob 08-26 (whole day) table_propertyInfo = pd.read_csv( filepath_or_buffer=p.path_propertyInfo_0826blob, header=None, names=p.fields_propertyInfo) ################ functions for decoded blob def lineClean(line): #replace all "" in a line to " #replace all \' by ""+' #s = s.replace("\\\'", "") #replace \+digits by ""+digit -> combine these two, replace / while (line.find('\"\"') != -1): line = line.replace('\"\"', '\"') line = line.replace(
# -*- coding: utf-8 -*- """ Created on Fri Sep 23 09:28:41 2016 @author: txia main script: load data, format data and import data to ES """ import params as ps import connectors import data_handlers import pandas as pd p = ps.Parameters() table_hotelDespInfo_20minavailRS = pd.read_csv( filepath_or_buffer=p.path_propertyInfo_0826_20minavailRS, header=None, names=p.fields_propertyInfo) table_IATAinfo = pd.read_csv(filepath_or_buffer=p.path_IATAinfo, header=None, names=p.fields_IATAinfo) table_singleAvailRQ = pd.read_csv(filepath_or_buffer=p.path_singleAvailRQ, header=None, names=p.fieldName_availRQ) table_multiAvailRQ = pd.read_csv(filepath_or_buffer=p.path_multiAvailRQ, header=None, names=p.fieldName_availRQ) table_availRQ = pd.concat([table_singleAvailRQ, table_multiAvailRQ]) #after concatenation, index should be reset, otherwise the index is not unique.
""" import connectors as ct import params as pm import pandas as pd import data_handlers #pms = pm.Parameters() #connectEx = ct.ElasticsearchConnector(pms.es_host, pms.es_port) #data = [] #mapping={} #for i in range(0, 100): # data.append("{\"message\":{\"a\":\"asd\", \"temp_id\":"+str(i)+"}}") #connectEx.execute("indexbulkex", mapping, "dd", data) pms = pm.Parameters() table_reserv = pd.read_csv(filepath_or_buffer=pms.path_reserv, header=None, names=pms.fieldName_reserv) table_singleAvailRS = pd.read_csv(filepath_or_buffer=pms.path_singleAvailRS, header=None, names=pms.fieldName_singleAvailRS) #result of group by res_series = table_reserv.groupby(['chain_code', 'roomTypeCode'])['roomTypeCode'].count() #rename it res_series = res_series.rename('NbrReserv') res_table = pd.DataFrame(res_series) res_table.reset_index(inplace=True)
while depth < info.depth_max: traced = funclib.trace_ray(rayO, rayD, info) if not traced: break obj, M, N, col_ray = traced # Reflection: create a new ray. rayO, rayD = M + N * .0001, funclib.normalize(rayD - 2 * np.dot(rayD, N) * N) depth += 1 col += reflection * col_ray reflection *= obj.get('reflection', 1.) array[i, :] = np.clip(col, 0, 1) return Piece(inputdata[0], array) global info info = params.Parameters() img = np.zeros((info.height, info.width, 3)) #start = timer() # Loop through all pixels. inputdata = [] mapping = {}; for j, y in enumerate(np.linspace(info.Screen[1], info.Screen[3], info.height)): d = (j, y) inputdata.append(d) p = multiprocessing.Pool(multiprocessing.cpu_count()) pieces = p.map(computepiece, inputdata) #print(timer()-start) for piece in pieces:
def setUp(self): self.params = params.Parameters() self.params.fluor_frame_params.phase_file = 'Images/1hOxa_1_w1Phase.TIF' self.params.fluor_frame_params.fluor_file = 'Images/1hOxa_1_w1Phase.TIF' self.ehooke = ehooke.EHooke(self.params)
} Energy = { '0': '12.95', '30': '16.027', '45': '21.71', '60': '36.55', '70': '70.0', '25.90': '25.90', '51.80': '51.80', '103.60': '103.60' } te = 15 // 0.025 #default equilibration time t_eq = int(fp * 0.025) + 1 ###### Chosen Input Parameters params.Parameters(temperature, energy) name = 'a' + Angle[angle] + 't' + Temperature[temperature] + 'e' + Energy[ energy] # shorthand notation "a<rad>t<K>e<[float]meV>" nameS = 'a' + angle + 't' + Temperature[temperature] + 'e' + Energy[ energy].split('.')[0] # shorthand "a<deg>t<K>e<[int]meV>" nameAng = angle + u"\u00b0, " + temperature + ' K, ' + Energy[ energy] + ' meV' # notation for titles "[deg], [temp] K, [energy] meV" ''' # Ar-Pt analysis g.jobs = (7331694, 7331705, 7331706, 7331713, 7331723, 7344079, 7344080, 7344081) name = 'Pta'+Angle[angle]+'t'+Temperature[temperature]+'e'+Energy[energy] ''' surface = '111' in_folder = g.HOME + '/lammps/' + surface + '/' + name + '/' from pathlib import Path home = str(Path.home())