get_paraphrased_sentences(model, tokenizer, sentence, num_beams=10, num_return_sequences=10) get_paraphrased_sentences(model, tokenizer, "To paraphrase a source, you have to rewrite a passage without changing the meaning of the original text.", num_beams=10, num_return_sequences=10) tokenizer = AutoTokenizer.from_pretrained("Vamsi/T5_Paraphrase_Paws") model = AutoModelForSeq2SeqLM.from_pretrained("Vamsi/T5_Paraphrase_Paws") get_paraphrased_sentences(model, tokenizer, "paraphrase: " + "One of the best ways to learn is to teach what you've already learned") !pip install git+https://github.com/PrithivirajDamodaran/Parrot_Paraphraser.git from parrot import Parrot parrot = Parrot() phrases = [ sentence, "One of the best ways to learn is to teach what you've already learned", "Paraphrasing is the process of coming up with someone else's ideas in your own words" ] for phrase in phrases: print("-"*100) print("Input_phrase: ", phrase) print("-"*100) paraphrases = parrot.augment(input_phrase=phrase) for paraphrase in paraphrases: print(paraphrase)
import warnings warnings.filterwarnings("ignore") from parrot import Parrot parrot = Parrot(model_tag="prithivida/parrot_paraphraser_on_T5", use_gpu=False) phrases = ["Can you recommed some upscale restaurants in Rome?"] for phrase in phrases: print("-" * 100) print(phrase) print("-" * 100) para_phrases = parrot.augment(input_phrase=phrase, diversity_ranker="levenshtein", do_diverse=False, max_return_phrases=10, max_length=32, adequacy_threshold=0.99, fluency_threshold=0.90) for para_phrase in para_phrases: print(para_phrases)