示例#1
0
def get_model_and_data_loaders(
    config: ConfigParser,
    logger: logging.Logger,
    ckpt_path: Path,
) -> Tuple[torch.nn.Module, module_data.ExpertDataLoader]:
    expert_dims, raw_input_dims, text_dim = compute_dims(config)

    data_loaders = config.init(
        name='data_loader',
        module=module_data,
        logger=logger,
        raw_input_dims=raw_input_dims,
        challenge_mode=config.get("challenge_mode", False),
        text_dim=text_dim,
        text_feat=config["experts"]["text_feat"],
        text_agg=config["experts"]["text_agg"],
        use_zeros_for_missing=config["experts"].get("use_zeros_for_missing",
                                                    False),
        task=config.get("task", "retrieval"),
        eval_only=True,
        distil_params=config.get("distil_params", None),
        training_file=config.get("training_file", None),
        caption_masks=config.get("caption_masks", None),
        ce_shared_dim=config["experts"].get("ce_shared_dim", None),
    )

    trn_config = compute_trn_config(config)
    model = config.init(
        name='arch',
        module=module_arch,
        trn_config=trn_config,
        expert_dims=expert_dims,
        text_dim=text_dim,
        disable_nan_checks=config["disable_nan_checks"],
        task=config.get("task", "retrieval"),
        ce_shared_dim=config["experts"].get("ce_shared_dim", None),
        feat_aggregation=config["data_loader"]["args"]["feat_aggregation"],
        trn_cat=config["data_loader"]["args"].get("trn_cat", 0),
    )
    ckpt_path = config._args.resume
    logger.info(f"Loading checkpoint: {ckpt_path} ...")
    checkpoint = torch.load(ckpt_path)
    state_dict = checkpoint['state_dict']
    if config['n_gpu'] > 1:
        model = torch.nn.DataParallel(model)
    # support backwards compatibility
    deprecated = ["ce.moe_fc_bottleneck1", "ce.moe_cg", "ce.moe_fc_proj"]
    for mod in deprecated:
        for suffix in ("weight", "bias"):
            key = f"{mod}.{suffix}"
            if key in state_dict:
                print(f"WARNING: Removing deprecated key {key} from model")
                state_dict.pop(key)
    model.load_state_dict(state_dict)

    return model, data_loaders
示例#2
0
def get_model_and_data_loaders(
        config: ConfigParser,
        logger: logging.Logger,
        ckpt_path: Path,
) -> Tuple[torch.nn.Module, module_data.ExpertDataLoader]:
    expert_dims, raw_input_dims = compute_dims(config)
    trn_config = compute_trn_config(config)

    data_loaders = config.init(
        name='data_loader',
        module=module_data,
        logger=logger,
        raw_input_dims=raw_input_dims,
        challenge_mode=config.get("challenge_mode", False),
        text_feat=config["experts"]["text_feat"],
        text_dim=config["experts"]["text_dim"],
        text_agg=config["experts"]["text_agg"],
        use_zeros_for_missing=config["experts"].get("use_zeros_for_missing", False),
        task=config.get("task", "retrieval"),
        eval_only=True,
    )

    model = config.init(
        name='arch',
        module=module_arch,
        trn_config=trn_config,
        expert_dims=expert_dims,
        text_dim=config["experts"]["text_dim"],
        disable_nan_checks=config["disable_nan_checks"],
        task=config.get("task", "retrieval"),
        ce_shared_dim=config["experts"].get("ce_shared_dim", None),
        feat_aggregation=config["data_loader"]["args"]["feat_aggregation"],
        trn_cat=config["data_loader"]["args"].get("trn_cat", 0),
    )
    ckpt_path = config._args.resume
    logger.info(f"Loading checkpoint: {ckpt_path} ...")
    checkpoint = torch.load(ckpt_path)
    state_dict = checkpoint['state_dict']
    if config['n_gpu'] > 1:
        model = torch.nn.DataParallel(model)
    model.load_state_dict(state_dict)

    return model, data_loaders