示例#1
0
 def __init__(self, *args, **kwargs):
   """"""
   
   super(Network, self).__init__(*args, **kwargs)
   # hacky!
   #hacky_train_files = op.join(self.save_dir, op.basename(self.get("train_files")))
   #self._config.set('Configurable', 'train_files', hacky_train_files)
   
   # TODO make this more flexible, maybe specify it in config?
   temp_nlp_model = self.nlp_model.from_configurable(self)
   if temp_nlp_model.input_vocabs == ['tags']:
     word_vocab = WordVocab.from_configurable(self)
     word_multivocab = Multivocab.from_configurable(self, [word_vocab], name=word_vocab.name)
     tag_vocab = TagVocab.from_configurable(self, initialize_zero=False)
   else:
     word_vocab = WordVocab.from_configurable(self)
     pretrained_vocab = PretrainedVocab.from_vocab(word_vocab)
     subtoken_vocab = self.subtoken_vocab.from_vocab(word_vocab)
     word_multivocab = Multivocab.from_configurable(self, [word_vocab, pretrained_vocab, subtoken_vocab], name=word_vocab.name)
     #word_multivocab = Multivocab.from_configurable(self, [word_vocab, pretrained_vocab], name=word_vocab.name)
     tag_vocab = TagVocab.from_configurable(self)
   dep_vocab = DepVocab.from_configurable(self)
   lemma_vocab = LemmaVocab.from_configurable(self)
   xtag_vocab = XTagVocab.from_configurable(self)
   head_vocab = HeadVocab.from_configurable(self)
   rel_vocab = RelVocab.from_configurable(self)
   self._vocabs = [dep_vocab, word_multivocab, lemma_vocab, tag_vocab, xtag_vocab, head_vocab, rel_vocab]
   self._global_step = tf.Variable(0., trainable=False, name='global_step')
   self._global_epoch = tf.Variable(0., trainable=False, name='global_epoch')
   self._optimizer = RadamOptimizer.from_configurable(self, global_step=self.global_step)
   return
示例#2
0
文件: zipf.py 项目: iwkhei/CEA-LIST
    def __call__(self):
        """"""
        #création d'un optimizer RAdam
        radam_optimizer = RadamOptimizer.from_configurable(self,
                                                           learning_rate=1e-1,
                                                           decay_steps=500)
        x = tf.placeholder(tf.float32, shape=(None, 1), name='x')
        y = tf.placeholder(tf.float32, shape=(None, 1), name='y')

        def affine(a, b):
            return a * tf.log(x) + b

        a = tf.get_variable('a',
                            shape=self.n_zipfs,
                            dtype=tf.float32,
                            initializer=tf.random_normal_initializer())
        b = tf.get_variable('b',
                            shape=self.n_zipfs,
                            dtype=tf.float32,
                            initializer=tf.random_normal_initializer())
        s = tf.get_variable('s',
                            shape=self.n_zipfs,
                            dtype=tf.float32,
                            initializer=tf.random_uniform_initializer(-2, -.5))
        t = tf.get_variable('t',
                            shape=self.n_zipfs,
                            dtype=tf.float32,
                            initializer=tf.random_normal_initializer())
        w = tf.expand_dims(tf.nn.softmax(affine(a, b)), axis=1, name='w')
        z = tf.expand_dims(affine(s, t), axis=2, name='z')
        yhat = tf.squeeze(tf.matmul(w, z), axis=2, name='yhat')
        ell = tf.reduce_mean((tf.log(y) - yhat)**2 / 2, name='ell')
        ell += tf.reduce_mean((tf.reduce_max(w, axis=0) - 1)**2 / 2)
        minimize = radam_optimizer.minimize(ell, name='minimize')
        return x, y, ell, minimize
示例#3
0
    def __init__(self, train=False, *args, **kwargs):
        """"""

        super(Network, self).__init__(*args, **kwargs)
        # hacky!
        #hacky_train_files = op.join(self.save_dir, op.basename(self.get("train_files")))
        #self._config.set('Configurable', 'train_files', hacky_train_files)

        #todo: essayer de reserver tt le gpu avant toute chose, si ça n'est pas possible on passe au prochain gpu
        gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=1)
        sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options))

        temp_nlp_model = self.nlp_model.from_configurable(self)

        print("\nloading word vocab")
        word_vocab = WordVocab.from_configurable(self)

        print("\nloading pretrained vocab")
        pretrained_vocab = PretrainedVocab.from_vocab(word_vocab)

        print("\nloading tag representation vocab")
        tagrep_vocab = None
        if 'tagrep' in temp_nlp_model.input_vocabs:
            tagrep_vocab = TagRepVocab.from_vocab(word_vocab)

        print("\nloading subtoken vocab")
        subtoken_vocab = self.subtoken_vocab.from_vocab(word_vocab)

        print("\ncreating multivocab")
        vocabs_of_multivocab = [word_vocab, pretrained_vocab]
        word_multivocab = Multivocab.from_configurable(self,
                                                       vocabs_of_multivocab,
                                                       name=word_vocab.name)
        if ('chars' in temp_nlp_model.input_vocabs
                or word_multivocab.merge_strategy != "only_pretrained"):
            vocabs_of_multivocab.append(subtoken_vocab)
            word_multivocab = Multivocab.from_configurable(
                self, vocabs_of_multivocab, name=word_vocab.name)
        print(word_multivocab.merge_strategy)
        print('chars' in temp_nlp_model.input_vocabs)
        print(word_multivocab.merge_strategy != "only_pretrained")

        print("\nloading tag vocab")
        tag_vocab = None
        if 'tags' in temp_nlp_model.input_vocabs or 'tags' in temp_nlp_model.output_vocabs:
            tag_vocab = TagVocab.from_configurable(self)

        print("\nloading dep vocab")
        dep_vocab = DepVocab.from_configurable(self)

        print("\nloading lemma vocab")
        lemma_vocab = LemmaVocab.from_configurable(self)

        print("\nloading xtag vocab")
        xtag_vocab = None
        if 'xtags' in temp_nlp_model.input_vocabs or 'xtags' in temp_nlp_model.output_vocabs or 'subxtags' in temp_nlp_model.input_vocabs or 'subxtags' in temp_nlp_model.output_vocabs:
            xtag_vocab = XTagVocab.from_configurable(self)

        print("\nloading feat vocab")
        feat_vocab = None
        if 'feats' in temp_nlp_model.input_vocabs or 'feats' in temp_nlp_model.output_vocabs or 'subfeats' in temp_nlp_model.input_vocabs or 'subfeats' in temp_nlp_model.output_vocabs:
            feat_vocab = FeatVocab.from_configurable(self)

        print("\nloading subfeat vocab")
        subfeat_vocabs = None
        if 'subfeats' in temp_nlp_model.input_vocabs or 'subfeats' in temp_nlp_model.output_vocabs:
            subfeat_vocabs = self.prepare_subpos_vocabs(
                feat_vocab, temp_nlp_model)
        print("\nloading subxtag vocab")
        subxtag_vocabs = None
        if 'subxtags' in temp_nlp_model.input_vocabs or 'subxtags' in temp_nlp_model.output_vocabs:
            subxtag_vocabs = self.prepare_subpos_vocabs(
                xtag_vocab, temp_nlp_model)

        head_vocab = HeadVocab.from_configurable(self)
        rel_vocab = RelVocab.from_configurable(self)
        self._vocabs = [
            dep_vocab, word_multivocab, lemma_vocab, tag_vocab, xtag_vocab,
            feat_vocab, head_vocab, rel_vocab, tagrep_vocab
        ]
        if subfeat_vocabs != None:
            self._vocabs.extend(subfeat_vocabs)
        if subxtag_vocabs != None:
            self._vocabs.extend(subxtag_vocabs)
        self._vocabs = filter(None, self._vocabs)
        print(self._vocabs)
        #print('subfeat_vocabs:',len(subfeat_vocabs))
        #print('subxtag_vocabs:',len(subxtag_vocabs))

        self._global_step = tf.Variable(0.,
                                        trainable=False,
                                        name='global_step')
        self._global_epoch = tf.Variable(0.,
                                         trainable=False,
                                         name='global_epoch')
        self._optimizer = RadamOptimizer.from_configurable(
            self, global_step=self.global_step)
        if train:
            self._global_time = tf.Variable(0.,
                                            trainable=False,
                                            name='global_time')
        return