示例#1
0
def condor_config(cores_per_job=4, mem_per_core=2048,
                  total_workers=24, max_workers=200,
                  pyenv_dir='%s/.local' % (os.environ['HOME'], ),
                  grid_proxy_dir='/tmp',
                  htex_label='coffea_parsl_condor_htex',
                  wrk_init=None,
                  condor_cfg=None):
    pyenv_relpath = pyenv_dir.split('/')[-1]

    if wrk_init is None:
        wrk_init = '''
        source /cvmfs/sft.cern.ch/lcg/views/LCG_95apython3/x86_64-centos7-gcc7-opt/setup.sh
        export PATH=`pwd`/%s:$PATH
        export PYTHONPATH=`pwd`/%s:$PYTHONPATH

        export X509_USER_PROXY=`pwd`/%s
        mkdir -p ./%s
        ''' % ('%s/bin' % pyenv_relpath,
               '%s/lib/python3.6/site-packages' % pyenv_relpath,
               x509_proxy,
               htex_label)

    if condor_cfg in None:
        condor_cfg = '''
        transfer_output_files = %s
        RequestMemory = %d
        RequestCpus = %d
        ''' % (htex_label, mem_per_core * cores_per_job, cores_per_job)

    xfer_files = [pyenv_dir, osp.join(grid_proxy_dir, x509_proxy)]

    condor_htex = Config(
        executors=[
            HighThroughputExecutor(
                label=htex_label,
                address=address_by_hostname(),
                prefetch_capacity=0,
                cores_per_worker=1,
                max_workers=cores_per_job,
                worker_logdir_root='./',
                provider=CondorProvider(
                    channel=LocalChannel(),
                    init_blocks=total_workers,
                    max_blocks=max_workers,
                    nodes_per_block=1,
                    worker_init=wrk_init,
                    transfer_input_files=xfer_files,
                    scheduler_options=condor_cfg
                ),
            )
        ],
        strategy=None,
    )

    return condor_htex
示例#2
0
from parsl.executors import HighThroughputExecutor
from parsl.utils import get_all_checkpoints

cores_per_slot = 8
worker_init = """

source ~/.bashrc
conda activate parsl
"""

scheduler_options = """
RequestMemory={}
""".format(5000 * cores_per_slot)

config = Config(executors=[
    HighThroughputExecutor(
        cores_per_worker=1,
        heartbeat_threshold=120,
        heartbeat_period=30,
        provider=CondorProvider(
            scheduler_options=scheduler_options,
            cores_per_slot=cores_per_slot,
            init_blocks=1,
            max_blocks=1,
            worker_init=worker_init,
        ),
    )
],
                checkpoint_mode='task_exit',
                checkpoint_files=get_all_checkpoints())
示例#3
0
    tmpdir=$_CONDOR_SCRATCH_DIR
    export TMPDIR=$tmpdir
else
    # otherwise use the TMPDIR
    tmpdir='.'
    mkdir -p $tmpdir
fi

source activate bnl

echo `which python`
"""

WALLTIME = "48:00:00"

config = Config(executors=[
    HighThroughputExecutor(worker_debug=True,
                           max_workers=1,
                           address='astro0010.rcf.bnl.gov',
                           provider=CondorProvider(
                               cores_per_slot=1,
                               mem_per_slot=2,
                               nodes_per_block=1,
                               init_blocks=100,
                               parallelism=0.01,
                               max_blocks=10000,
                               scheduler_options=SCHED_OPTS,
                               worker_init=WORKER_INIT,
                               walltime=WALLTIME))
], )
示例#4
0
worker_init = '''
# source /cvmfs/sft.cern.ch/lcg/views/LCG_95apython3/x86_64-centos7-gcc7-opt/setup.sh

wrapper.sh bash

export PATH=~/.local/bin:$PATH
export PYTHONPATH=~/.local/lib/python3.6/site-packages:$PYTHONPATH
export FUNCX_TMPDIR=/tmp/{user}
export WORKER_TMPDIR=/tmp/{user}/workers

export X509_USER_PROXY=`pwd`/{proxy}

mkdir -p $FUNCX_TMPDIR

'''.format(user=os.environ['USER'], proxy=os.path.basename(proxy))

config = Config(
    scaling_enabled=False,
    worker_debug=True,
    cores_per_worker=1,
    strategy=SimpleStrategy(max_idletime=60000),  # TOTAL HACK FIXME
    provider=CondorProvider(
        scheduler_options=
        'stream_error=TRUE\nstream_output=TRUE\nTransferOut=TRUE\nTransferErr=TRUE',
        cores_per_slot=8,
        init_blocks=5,
        max_blocks=5,
        worker_init=worker_init,
        transfer_input_files=[proxy, siteconf, wrapper]),
)
示例#5
0
from parsl.config import Config
from parsl.providers import CondorProvider
from parsl.executors import HighThroughputExecutor

config = Config(
    executors=[
        HighThroughputExecutor(
            label='OSG_HTEX',
            max_workers=1,
            provider=CondorProvider(
                nodes_per_block=1,
                init_blocks=4,
                max_blocks=4,
                # This scheduler option string ensures that the compute nodes provisioned
                # will have modules
                scheduler_options="""
                +ProjectName = "MyProject"
                Requirements = HAS_MODULES=?=TRUE
                """,
                # Command to be run before starting a worker, such as:
                # 'module load Anaconda; source activate parsl_env'.
                worker_init='''unset HOME; unset PYTHONPATH; module load python/3.7.0;
python3 -m venv parsl_env; source parsl_env/bin/activate; python3 -m pip install parsl''',
                walltime="00:20:00",
            ),
            worker_logdir_root='$OSG_WN_TMP',
            worker_ports=(31000, 31001)
        )
    ]
)
                            worker_init="\n".join(env_extra),
                            walltime='00:120:00'),
                    )
                ],
                retries=20,
            )
        elif 'condor' in args.executor:
            htex_config = Config(executors=[
                HighThroughputExecutor(
                    label='coffea_parsl_condor',
                    address=address_by_query(),
                    # max_workers=1,
                    provider=CondorProvider(
                        nodes_per_block=1,
                        init_blocks=1,
                        max_blocks=1,
                        worker_init="\n".join(env_extra + condor_extra),
                        walltime="00:20:00",
                    ),
                )
            ])
        else:
            raise NotImplementedError

        dfk = parsl.load(htex_config)

        output = processor.run_uproot_job(
            sample_dict,
            treename='Events',
            processor_instance=processor_instance,
            executor=processor.parsl_executor,
 max_workers=1,
 poll_period=10,
 prefetch_capacity=0,
 provider=CondorProvider(
     channel=OAuthSSHChannel(
         'spce01.sdcc.bnl.gov',
         envs={},
         port=2222,
         script_dir='/sdcc/u/dcde1000006/parsl_scripts',
         username='******'),
     environment={},
     init_blocks=1,
     # launcher=SingleNodeLauncher(),
     max_blocks=1,
     min_blocks=1,
     nodes_per_block=1,
     #parallelism=1,
     parallelism=0,
     project='',
     #Trying this Requirements directive per Dong's instructions:
     #requirements='regexp("^sp[oa]", machine)',
     scheduler_options=
     'accounting_group = group_sdcc.main \nRequirements = (regexp("^sp[oa]", machine))',
     transfer_input_files=[],
     walltime='00:30:00',
     #worker_init='source /sdcc/u/dcde1000001/dcdesetup.sh'
     worker_init=
     'source /hpcgpfs01/work/dcde/setup.sh; source activate dcdemaster20191008'
 ),
 storage_access=[],
 suppress_failure=False,
 worker_debug=True,
示例#8
0
 managed=True,
 max_workers=1,
 mem_per_worker=None,
 poll_period=10,
 prefetch_capacity=0,
 provider=CondorProvider(
     channel=OAuthSSHChannel(
         'spce01.sdcc.bnl.gov',
         envs={},
         port=2222,
         script_dir='/sdcc/u/dcde1000006/parsl_scripts',
         username='******'
     ),
     environment={},
     init_blocks=1,
     # launcher=SingleNodeLauncher(),
     max_blocks=1,
     min_blocks=0,
     nodes_per_block=1,
     parallelism=1,
     project='',
     requirements='',
     scheduler_options='accounting_group = group_sdcc.main',
     transfer_input_files=[],
     walltime='00:10:00',
     worker_init='source /sdcc/u/dcde1000001/dcdesetup.sh'
 ),
 storage_access=[],
 suppress_failure=False,
 worker_debug=True,
 worker_logdir_root='/sdcc/u/dcde1000006/parsl_scripts/logs',
 worker_port_range=(50000, 51000),
示例#9
0
def parsl_condor_config(workers=1):

    x509_proxy = f'x509up_u{UID}'
    grid_proxy_dir = '/tmp'

    cores_per_job = 1
    mem_per_core = 2000
    mem_request = mem_per_core * cores_per_job
    init_blocks = 1
    min_blocks = 1
    max_blocks = workers
    htex_label='coffea_parsl_condor_htex'
    log_dir = 'parsl_logs'
    log_dir_full = os.path.join('/nfs_scratch/dntaylor',log_dir)

    worker_init = f'''
echo "Setting up environment"
tar -zxf columnar.tar.gz
source columnar/bin/activate
export PATH=columnar/bin:$PATH
export PYTHONPATH=columnar/lib/python3.6/site-packages:$PYTHONPATH
export X509_USER_PROXY={x509_proxy}
mkdir -p {log_dir}/{htex_label}
echo "Environment ready"
'''

    # requirements for T2_US_Wisconsin (HAS_CMS_HDFS forces to run a T2 node not CHTC)
    # Removing for now:
    scheduler_options = f'''
transfer_output_files   = {log_dir}/{htex_label}
RequestMemory           = {mem_request}
RequestCpus             = {cores_per_job}
+RequiresCVMFS          = True
Requirements            = TARGET.HAS_CMS_HDFS && TARGET.Arch == "X86_64"
priority                = 10
'''

    transfer_input_files = [os.path.join(os.path.dirname(os.path.abspath(__file__)),'columnar.tar.gz'), os.path.join(grid_proxy_dir, x509_proxy)]

    htex = Config(
        executors=[
            HighThroughputExecutor(
                label=htex_label,
                address=address_by_hostname(),
                prefetch_capacity=0,
                cores_per_worker=1,
                max_workers=cores_per_job,
                worker_logdir_root=log_dir,
                provider=CondorProvider(
                    channel=LocalChannel(
                        userhome='/nfs_scratch/dntaylor',
                    ),
                    init_blocks=init_blocks,
                    min_blocks=min_blocks,
                    max_blocks=max_blocks,
                    nodes_per_block=1,
                    worker_init=worker_init,
                    transfer_input_files=transfer_input_files,
                    scheduler_options=scheduler_options,
                ),
            ),
            # TODO: works, but really isn't helpful since half of the tasks get shipped to the condor
            # executor and don't flock back when the local executor is empty
            # an alternative could be to preprocess locally and process on the grid
            # add a local executor so stuff starts fast
            #HighThroughputExecutor(
            #    label="coffea_parsl_default",
            #    cores_per_worker=1,
            #    max_workers=1, # TODO: multicore local?
            #    worker_logdir_root=log_dir,
            #    provider=LocalProvider(
            #        channel=LocalChannel(),
            #        init_blocks=1,
            #        max_blocks=1,
            #    ),
            #),
        ],
        strategy='simple',
        run_dir=os.path.join(log_dir_full,'runinfo'),
        retries = 2, # retry all failures, xrootd failures are retried then skipped via coffea executor itself
    )

    return htex
示例#10
0
from parsl.config import Config
from parsl.executors import WorkQueueExecutor
from parsl.providers import CondorProvider

config = Config(executors=[
    WorkQueueExecutor(
        port=50055,
        source=True,
        provider=CondorProvider(),
        # init_command='source /home/yadu/src/wq_parsl/setup_parsl_env.sh;
        # echo "Ran at $date" > /home/yadu/src/wq_parsl/parsl/tests/workqueue_tests/ran.log',
    )
])
示例#11
0
import parsl
from parsl.channels import LocalChannel
from parsl.providers import CondorProvider
from parsl.config import Config
from parsl.executors.ipp import IPyParallelExecutor
from parsl.app.app import python_app, bash_app

config = Config(
    executors=[
        IPyParallelExecutor(
            label='htcondor',
            provider=CondorProvider(
                channel=LocalChannel(),
                nodes_per_block=1,
                init_blocks=1,
                max_blocks=1,
                scheduler_options='accounting_group = group_sdcc.main',
                worker_init='',  # Input your worker_init if needed
                requirements='',
            ),
            engine_debug_level='DEBUG',
        )
    ], )

parsl.clear()
parsl.load(config)


@python_app()
def hello():
    return 'Hello World'
示例#12
0
from parsl.channels import LocalChannel

path_str = os.environ["PATH"]
# TODO: find a way to compute this.
#worker_script_path = "/afs/crc.nd.edu/user/d/dsmith47/.local/bin"
#worker_script_path = "/afs/crc.nd.edu/user/d/dsmith47/Documents/Parsl/parsl/parsl"
worker_script_path = "/afs/crc.nd.edu/user/d/dsmith47/Documents/Parsl/parsl/build/lib/parsl/executors/high_throughput/"
# TODO: find a way to determine this
address_str = "condorfe.crc.nd.edu"

config = Config(executors=[
    HighThroughputExecutor(
        label='condor_hte',
        provider=CondorProvider(
            project="condor_hte",
            channel=LocalChannel(),
            worker_init="export HOME=$PWD",
            environment={"PATH": path_str + ":" + worker_script_path},
            requirements="process_worker_pool.py"),
        address=address_str,
        working_dir=os.getcwd(),
    )
])

parsl.load(config)


@python_app
def generate(limit):
    from random import randint
    return randint(1, limit)
示例#13
0
        j.result()
    end_time = time.time()
    return end_time - start_time


local_config = Config(
    executors=[ThreadPoolExecutor(max_threads=8, label='local_threads')])

address_str = "condorfe.crc.nd.edu"
path_str = os.environ["PATH"]

condor_config = Config(executors=[
    HighThroughputExecutor(
        label='condor_hte',
        provider=CondorProvider(project="condor_hte",
                                channel=LocalChannel(),
                                worker_init="export HOME=$PWD",
                                environment={"PATH": path_str}),
        address=address_str,
        working_dir=os.getcwd(),
    ),
])

#TODO: This port number needs to be configurable so that a script can specify
# the port here and when spinning up workers.
wq_config = Config(executors=[
    WorkQueueExecutor(label='wq_exec',
                      project_name='wq_benchmark',
                      env={"PATH": path_str},
                      init_command="export HOME=$PWD",
                      port=9000)
])
示例#14
0
proxy = '/tmp/x509up_u{}'.format(os.getuid())
if not os.path.isfile(proxy):
    raise RuntimeError(
        'No valid proxy found-- please run `voms-proxy-init -voms cms`')

worker_init = '''
source /cvmfs/sft.cern.ch/lcg/views/LCG_95apython3/x86_64-centos7-gcc7-opt/setup.sh

export PATH=~/.local/bin:$PATH
export PYTHONPATH=~/.local/lib/python3.6/site-packages:$PYTHONPATH

export X509_USER_PROXY=`pwd`/{}
'''.format(os.path.basename(proxy))

config = Config(executors=[
    HighThroughputExecutor(
        address=address_by_hostname(),
        cores_per_worker=1,
        worker_debug=True,
        provider=CondorProvider(
            cores_per_slot=8,
            init_blocks=90,
            max_blocks=90,
            worker_init=worker_init,
            transfer_input_files=[proxy],
        ),
    )
],
                retries=5,
                strategy=None)
示例#15
0
This produces an error in stdout from parsl:
parsl.parsl.auto.1561593082.171704.script: line 7: process_worker_pool.py: command not found

corresponding line in the submitted script:

process_worker_pool.py   -c 1.0 --poll 10 --task_url=tcp://130.199.185.13:54772 --result_url=tcp://130.199.185.13:54295 --l

"""

bnl_sdcc_condor = Config(executors=[
    HighThroughputExecutor(
        label='sdcc_condor',
        provider=CondorProvider(
            channel=LocalChannel(script_dir='parsl_scriptdir'),
            nodes_per_block=1,
            init_blocks=1,
            min_blocks=1,
            max_blocks=1,
            parallelism=0,
            scheduler_options='accounting_group = group_sdcc.main'),
        address='130.199.185.13',
        managed=False)
], )

parsl.load(bnl_sdcc_condor)
"""
try doing something more explicit with stderr and stdout (based on Ketan's
Cori/relion example):
"""

#condorinfo = sdcc_wninfo(executors=['sdcc_condor'])
condorinfo = sdcc_wninfo(stdout='relion_condor.out',
示例#16
0
# If you are a developer running tests, make sure to update parsl/tests/configs/user_opts.py
# If you are a user copying-and-pasting this as an example, make sure to either
#       1) create a local `user_opts.py`, or
#       2) delete the user_opts import below and replace all appearances of `user_opts` with the literal value
#          (i.e., user_opts['swan']['username'] -> 'your_username')
from .user_opts import user_opts

config = Config(
    executors=[
        HighThroughputExecutor(
            label='OSG_HTEX',
            address=address_by_query(),
            max_workers=1,
            provider=CondorProvider(
                nodes_per_block=1,
                init_blocks=4,
                max_blocks=4,
                # This scheduler option string ensures that the compute nodes provisioned
                # will have modules
                scheduler_options=
                'Requirements = OSGVO_OS_STRING == "RHEL 6" && Arch == "X86_64" &&  HAS_MODULES == True',
                # Command to be run before starting a worker, such as:
                # 'module load Anaconda; source activate parsl_env'.
                worker_init=user_opts['osg']['worker_init'],
                walltime="00:20:00",
            ),
        )
    ],
    run_dir=get_rundir())
示例#17
0
docker_image = "opensciencegrid/osgvo-el6"

transfer_output_files = coffea_parsl_condor
''' #% (nproc, ) # twoGB*nproc,

#RequestMemory = %d
#RequestCpus = %d
#RequestDisk = 1048576

xfer_files = ['%s/.local' % (os.environ['HOME'], ), '/tmp/%s' % (x509_proxy, )]

config = Config(
    executors=[
        HighThroughputExecutor(
            label="coffea_parsl_condor",
            address=address_by_hostname(),
            prefetch_capacity=0,
            cores_per_worker=1,
            max_workers=nproc,
            worker_logdir_root='./',
            provider=CondorProvider(init_blocks=8,
                                    max_blocks=200,
                                    nodes_per_block=1,
                                    worker_init=wrk_init,
                                    transfer_input_files=xfer_files,
                                    scheduler_options=condor_cfg),
        )
    ],
    strategy=None,
)