def train(config): # Initialize the device which to run the model on device = torch.device(config.device) # Initialize the dataset and data loader (note the +1) dataset = TextDataset(config.txt_file, config.seq_length) data_loader = DataLoader(dataset, config.batch_size, num_workers=1) # Initialize the model that we are going to use model = TextGenerationModel(config.batch_size, config.seq_length, dataset.vocab_size, config.lstm_num_hidden, config.lstm_num_layers, device) # Setup the loss and optimizer criterion = nn.CrossEntropyLoss() optimizer = optim.RMSprop(model.parameters(), config.learning_rate) scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=config.learning_rate_step, gamma=config.learning_rate_decay) accuracy_train = [] loss_train = [] if config.samples_out_file != "STDOUT": samples_out_file = open(config.samples_out_file, 'w') epochs = config.train_steps // len(data_loader) + 1 print( "Will train on {} batches in {} epochs, max {} batches/epoch.".format( config.train_steps, epochs, len(data_loader))) for epoch in range(epochs): data_loader_iter = iter(data_loader) if epoch == config.train_steps // len(data_loader): batches = config.train_steps % len(data_loader) else: batches = len(data_loader) for step in range(batches): batch_inputs, batch_targets = next(data_loader_iter) model.zero_grad() # Only for time measurement of step through network t1 = time.time() batch_inputs = F.one_hot( batch_inputs, num_classes=dataset.vocab_size, ).float().to(device) batch_targets = batch_targets.to(device) optimizer.zero_grad() pred, _ = model.forward(batch_inputs) loss = criterion(pred.transpose(2, 1), batch_targets) accuracy = acc( pred.transpose(2, 1), F.one_hot(batch_targets, num_classes=dataset.vocab_size).float(), dataset.vocab_size) loss.backward() torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=config.max_norm) optimizer.step() # Just for time measurement t2 = time.time() examples_per_second = config.batch_size / float(t2 - t1) scheduler.step() if (epoch * len(data_loader) + step + 1) % config.seval_every == 0: accuracy_train.append(accuracy) loss_train.append(loss.item()) if (epoch * len(data_loader) + step + 1) % config.print_every == 0: print( "[{}] Epoch: {:04d}/{:04d}, Train Step {:04d}/{:04d}, Batch Size = {}, Examples/Sec = {:.2f}, " "Accuracy = {:.2f}, Loss = {:.3f}".format( datetime.now().strftime("%Y-%m-%d %H:%M"), epoch + 1, epochs, (epoch * len(data_loader) + step + 1), config.train_steps, config.batch_size, examples_per_second, accuracy, loss)) if (epoch * len(data_loader) + step + 1) % config.sample_every == 0: with torch.no_grad(): codes = [] input_tensor = torch.zeros((1, 1, dataset.vocab_size), device=device) input_tensor[0, 0, np.random.randint(0, dataset.vocab_size)] = 1 for i in range(config.seq_length - 1): response = model.step(input_tensor) logits = F.log_softmax(config.temp * response, dim=1) dist = torch.distributions.one_hot_categorical.OneHotCategorical( logits=logits) code = dist.sample().argmax().item() input_tensor *= 0 input_tensor[0, 0, code] = 1 codes.append(code) string = dataset.convert_to_string(codes) model.reset_stepper() if config.samples_out_file != "STDOUT": samples_out_file.write("Step {}: ".format( epoch * len(data_loader) + step + 1) + string + "\n") else: print(string) if config.samples_out_file != "STDOUT": samples_out_file.close() if config.model_out_file != None: torch.save(model, config.model_out_file) if config.curves_out_file != None: import matplotlib.pyplot as plt fig, ax = plt.subplots(1, 2, figsize=(10, 5)) fig.suptitle( 'Training curves for Pytorch 2-layer LSTM.\nFinal loss: {:.4f}. Final accuracy: {:.4f}\nSequence length: {}, Hidden units: {}, LSTM layers: {}, Learning rate: {:.4f}' .format(loss_train[-1], accuracy_train[-1], config.seq_length, config.lstm_num_hidden, config.lstm_num_layers, config.learning_rate)) plt.subplots_adjust(top=0.8) ax[0].set_title('Loss') ax[0].set_ylabel('Loss value') ax[0].set_xlabel('No of batches seen x{}'.format(config.seval_every)) ax[0].plot(loss_train, label='Train') ax[0].legend() ax[1].set_title('Accuracy') ax[1].set_ylabel('Accuracy value') ax[1].set_xlabel('No of batches seen x{}'.format(config.seval_every)) ax[1].plot(accuracy_train, label='Train') ax[1].legend() plt.savefig(config.curves_out_file) print('Done training.')
def train(config): # Initialize the device which to run the model on #device = torch.device(config.device) # Initialize the dataset and data loader (note the +1) dataset = TextDataset(config.txt_file, config.seq_length) # fixme data_loader = DataLoader(dataset, config.batch_size, num_workers=1) #print(dataset._char_to_ix) vocabulary order changes, but batches are same sentence examples with the seeds earlier. # Initialize the model that we are going to use model = TextGenerationModel(config.batch_size, config.seq_length, dataset.vocab_size, config.lstm_num_hidden, config.lstm_num_layers, config.device) # fixme device = model.device model = model.to(device) # Setup the loss and optimizer criterion = torch.nn.CrossEntropyLoss() optimizer = torch.optim.RMSprop(model.parameters(), lr=config.learning_rate) print("Len dataset:", len(dataset)) print("Amount of steps for dataset:", len(dataset) / config.batch_size) current_step = 0 not_max = True list_train_acc = [] list_train_loss = [] acc_average = [] loss_average = [] file = open("sentences.txt", 'w', encoding='utf-8') ''' file_greedy = open("sentences_greedy.txt",'w',encoding='utf-8') file_tmp_05 = open("sentences_tmp_05.txt", 'w', encoding='utf-8') file_tmp_1 = open("sentences_tmp_1.txt", 'w', encoding='utf-8') file_tmp_2 = open("sentences_tmp_2.txt", 'w', encoding='utf-8') ''' while not_max: for (batch_inputs, batch_targets) in data_loader: # Only for time measurement of step through network t1 = time.time() ####################################################### # Add more code here ... #List of indices from word to ID, that is in dataset for embedding #Embedding lookup embed = model.embed #Embeding shape(dataset.vocab_size, config.lstm_num_hidden) #Preprocess input to embeddings to give to LSTM all at once all_embed = [] #sentence = [] for batch_letter in batch_inputs: batch_letter_to = batch_letter.to( device) #torch.tensor(batch_letter,device = device) embedding = embed(batch_letter_to) all_embed.append(embedding) #sentence.append(batch_letter_to[0].item()) all_embed = torch.stack(all_embed) #Print first example sentence of batch along with target #print(dataset.convert_to_string(sentence)) #sentence = [] #for batch_letter in batch_targets: # sentence.append(batch_letter[0].item()) #print(dataset.convert_to_string(sentence)) all_embed = all_embed.to(device) outputs = model( all_embed ) #[30,64,vocab_size] 87 last dimension for fairy tails ####################################################### #loss = np.inf # fixme #accuracy = 0.0 # fixme #For loss: ensuring that the prediction dim are batchsize x vocab_size x sequence length and targets: batchsize x sequence length batch_first_output = outputs.transpose(0, 1).transpose(1, 2) batch_targets = torch.stack(batch_targets).to(device) loss = criterion(batch_first_output, torch.t(batch_targets)) #Backpropagate model.zero_grad() loss.backward() loss = loss.item() torch.nn.utils.clip_grad_norm(model.parameters(), max_norm=config.max_norm) optimizer.step() #Accuracy number_predictions = torch.argmax(outputs, dim=2) result = number_predictions == batch_targets accuracy = result.sum().item() / (batch_targets.shape[0] * batch_targets.shape[1]) '''' #Generate sentences for all settings on every step sentence_id = model.generate_sentence(config.gsen_length, -1) sentence = dataset.convert_to_string(sentence_id) #print(sentence) file_greedy.write( (str(current_step) + ": " + sentence + "\n")) sentence_id = model.generate_sentence(config.gsen_length, 0.5) sentence = dataset.convert_to_string(sentence_id) #print(sentence) file_tmp_05.write( (str(current_step) + ": " + sentence + "\n")) sentence_id = model.generate_sentence(config.gsen_length, 1) sentence = dataset.convert_to_string(sentence_id) #print(sentence) file_tmp_1.write( (str(current_step) + ": " + sentence + "\n")) sentence_id = model.generate_sentence(config.gsen_length, 2) sentence = dataset.convert_to_string(sentence_id) #print(sentence) file_tmp_2.write( (str(current_step) + ": " + sentence + "\n")) ''' if config.measure_type == 2: acc_average.append(accuracy) loss_average.append(loss) # Just for time measurement t2 = time.time() examples_per_second = config.batch_size / float(t2 - t1) if current_step % config.print_every == 0: # Average accuracy and loss over the last print every step (5 by default) if config.measure_type == 2: accuracy = sum(acc_average) / config.print_every loss = sum(loss_average) / config.print_every acc_average = [] loss_average = [] # Either accuracy and loss on the print every interval or the average of that interval as stated above list_train_acc.append(accuracy) list_train_loss.append(loss) print( "[{}] Train Step {:04d}/{:04d}, Batch Size = {}, Examples/Sec = {:.2f}, " "Accuracy = {:.2f}, Loss = {:.3f}".format( datetime.now().strftime("%Y-%m-%d %H:%M"), current_step, config.train_steps, config.batch_size, examples_per_second, accuracy, loss)) elif config.measure_type == 0: # Track accuracy and loss for every step list_train_acc.append(accuracy) list_train_loss.append(loss) if current_step % config.sample_every == 0: # Generate sentence sentence_id = model.generate_sentence(config.gsen_length, config.temperature) sentence = dataset.convert_to_string(sentence_id) print(sentence) file.write((str(current_step) + ": " + sentence + "\n")) if current_step == config.train_steps: # If you receive a PyTorch data-loader error, check this bug report: # https://github.com/pytorch/pytorch/pull/9655 not_max = False break current_step += 1 # Close the file and make sure sentences en measures are saved file.close() pickle.dump((list_train_acc, list_train_loss), open("loss_and_train.p", "wb")) #Plot print(len(list_train_acc)) if config.measure_type == 0: eval_steps = list(range(config.train_steps + 1)) # Every step Acc else: # eval_steps = list( range(0, config.train_steps + config.print_every, config.print_every)) if config.measure_type == 2: plt.plot(eval_steps[:-1], list_train_acc[1:], label="Train accuracy") else: plt.plot(eval_steps, list_train_acc, label="Train accuracy") plt.xlabel("Step") plt.ylabel("Accuracy") plt.title("Training accuracy LSTM", fontsize=18, fontweight="bold") plt.legend() # plt.savefig('accuracies.png', bbox_inches='tight') plt.show() if config.measure_type == 2: plt.plot(eval_steps[:-1], list_train_loss[1:], label="Train loss") else: plt.plot(eval_steps, list_train_loss, label="Train loss") plt.xlabel("Step") plt.ylabel("Loss") plt.title("Training loss LSTM", fontsize=18, fontweight="bold") plt.legend() # plt.savefig('loss.png', bbox_inches='tight') plt.show() print('Done training.')