# -*- coding: utf-8 -*-
"""
Created on Tue Mar  6 19:30:05 2018

@author: Erik
"""

import get_data as gd
import part2b_code as p2b
import part1c_code as p1c
import gradient_calculation as gc

X_test, y_test = gd.read_data_formatted('test_struct.txt')
X_train, y_train = gd.read_data_formatted('train_struct_1000.txt')
params = gd.get_params()

p2b.optimize(params, X_train, y_train, 1000, 'solution_1000_distortion')

params = p2b.get_optimal_params('solution_1000_distortion')
w = gc.w_matrix(params)
t = gc.t_matrix(params)

print("Function value: ")
print(p2b.func_to_minimize(params, X_train, y_train, 1000))

y_pred = p2b.predict(X_test, w, t)

print(p2b.accuracy(y_pred, y_test))
示例#2
0
"""
import part2b_code as p2b
import gradient_calculation as gc
import get_data as gd
import part2b_code as p2b

X_train, y_train = gd.read_data_formatted('train_struct.txt')
X_test, y_test = gd.read_data_formatted('test_struct.txt')
params = gd.get_params()

#Run optimization, should take 3+ hours so commented out.
'''
cvals = [1, 10, 100, 1000]

for elt in cvals:
    p2b.optimize(params, X_train, y_train, elt, 'solution' + str(elt))
    print("done with" + str(elt))
    
'''

#check accuracy
cvals = [1, 10, 100, 1000]

for elt in cvals:
    params = p2b.get_optimal_params('solution' + str(elt))
    w = gc.w_matrix(params)
    t = gc.t_matrix(params)
    prediction = p2b.predict(X_test, w, t)
    print("Accuracy for: " + str(elt))
    print(p2b.accuracy(prediction, y_test))