def start_echoRDdx(mc, particles, npart, precTS, pdyn, cinf, runname='echoRD', t_end=3600., output=60., start_offset=0., splitfac=10): [thS, npart] = pdyn.gridupdate_thS(particles.lat, particles.z, mc) drained = pd.DataFrame(np.array([])) leftover = 0 plotparticles_t(runname, 0., 0, particles, (thS / 100.).reshape(np.shape(npart)), mc) #loop through plot cycles dummy = np.floor(t_end / output) for i in np.arange(dummy.astype(int)): [particles, npart, thS, leftover, drained, t] = CAOSpy_rundx(i * output + start_offset, (i + 1) * output + start_offset, mc, pdyn, cinf, precTS, particles, leftover, drained, splitfac=splitfac) plotparticles_t(runname, t, i + 1, particles, (thS / 100.).reshape(np.shape(npart)), mc)
def start_echoRDdx(mc,particles,npart,precTS,pdyn,cinf,runname='echoRD',t_end=3600.,output=60.,start_offset=0.,splitfac=10): [thS,npart]=pdyn.gridupdate_thS(particles.lat,particles.z,mc) drained=pd.DataFrame(np.array([])) leftover=0 plotparticles_t(runname,0.,0,particles,(thS/100.).reshape(np.shape(npart)),mc) #loop through plot cycles dummy=np.floor(t_end/output) for i in np.arange(dummy.astype(int)): [particles,npart,thS,leftover,drained,t]=CAOSpy_rundx(i*output+start_offset,(i+1)*output+start_offset,mc,pdyn,cinf,precTS,particles,leftover,drained,splitfac=splitfac) plotparticles_t(runname,t,i+1,particles,(thS/100.).reshape(np.shape(npart)),mc)
def CAOSpy_rundx_noise(tstart,tstop,mc,pdyn,cinf,precTS,particles,leftover,drained,dt_max=1.,splitfac=10,prec_2D=False,maccoat=10.,exfilt_method='Ediss',saveDT=True,vertcalfac=1.,latcalfac=1.,clogswitch=False,infilt_method='MDA',film=True,dynamic_pedo=True,ksnoise=1.): if run_from_ipython(): from IPython import display timenow=tstart prec_part=0. #precipitation which is less than one particle to accumulate acc_mxinf=0. #matrix infiltration may become very small - this shall handle that some particles accumulate to infiltrate exfilt_p=0. #exfiltration from the macropores s_red=0. #loop through time while timenow < tstop: [thS,npart]=pdyn.gridupdate_thS(particles.lat,particles.z,mc) if saveDT==True: #define dt as Courant/Neumann criterion dt_D=(mc.mgrid.vertfac.values[0])**2 / (6*np.nanmax(mc.D[np.amax(thS),:])) dt_ku=-mc.mgrid.vertfac.values[0]/np.nanmax(mc.ku[np.amax(thS),:]) dt=np.amin([dt_D,dt_ku,dt_max,tstop-timenow]) else: if type(saveDT)==float: #define dt as pre-defined dt=np.amin([saveDT,tstop-timenow]) elif type(saveDT)==int: #define dt as modified Corant/Neumann criterion dt_D=(mc.mgrid.vertfac.values[0])**2 / (6*np.nanmax(mc.D[np.amax(thS),:]))*saveDT dt_ku=-mc.mgrid.vertfac.values[0]/np.nanmax(mc.ku[np.amax(thS),:])*saveDT dt=np.amin([dt_D,dt_ku,dt_max,tstop-timenow]) #INFILTRATION [p_inf,prec_part,acc_mxinf]=cinf.pmx_infilt(timenow,precTS,prec_part,acc_mxinf,thS,mc,pdyn,dt,0.,prec_2D,particles.index[-1],infilt_method) #drain all ponding // leftover <-> 0. particles=pd.concat([particles,p_inf]) #DIFFUSION [particles,thS,npart,phi_mx]=pdyn.part_diffusion_split(particles,npart,thS,mc,dt,False,splitfac,vertcalfac,latcalfac,dynamic_pedo=True,ksnoise=ksnoise) #ADVECTION if not particles.loc[(particles.flag>0) & (particles.flag<len(mc.maccols)+1)].empty: [particles,s_red,exfilt_p]=pdyn.mac_advection(particles,mc,thS,dt,clogswitch,maccoat,exfilt_method,film=film,dynamic_pedo=True,ksnoise=ksnoise) #INTERACT particles=pdyn.mx_mp_interact_nobulk(particles,npart,thS,mc,dt,dynamic_pedo=True,ksnoise=ksnoise) if run_from_ipython(): display.clear_output() display.display_pretty(''.join(['time: ',str(timenow),'s | precip: ',str(len(p_inf)),' particles | mean v(adv): ',str(particles.loc[particles.flag>0,'advect'].mean()),' m/s | exfilt: ',str(int(exfilt_p)),' particles'])) else: print 'time: ',timenow,'s' #CLEAN UP DATAFRAME drained=drained.append(particles[particles.flag==len(mc.maccols)+1]) particles=particles[particles.flag!=len(mc.maccols)+1] pondparts=(particles.z<0.) leftover=np.count_nonzero(-pondparts) particles.cell[particles.cell<0]=mc.mgrid.cells.values particles=particles[pondparts] timenow=timenow+dt return(particles,npart,thS,leftover,drained,timenow)
def start_echoRDxstore(mc,particles,npart,precTS,pdyn,cinf,runname='echoRD',t_end=3600.,output=60.,start_offset=0.,splitfac=10,maccoat=10.,exfilt_method='Ediss'): [thS,npart]=pdyn.gridupdate_thS(particles.lat,particles.z,mc) drained=pd.DataFrame(np.array([])) leftover=0 plotparticles_t(runname,0.,0,particles,(thS/100.).reshape(np.shape(npart)),mc) #loop through plot cycles dummy=np.floor(t_end/output) TSstore=np.zeros((int(dummy),np.shape(thS)[0],np.shape(thS)[1])) for i in np.arange(dummy.astype(int)): [particles,npart,thS,leftover,drained,t]=CAOSpy_rundx(i*output+start_offset,(i+1)*output+start_offset,mc,pdyn,cinf,precTS,particles,leftover,drained,splitfac=splitfac,prec_2D=True,maccoat=maccoat,exfilt_method=exfilt_method) plotparticles_t(runname,t,i+1,particles,(thS/100.).reshape(np.shape(npart)),mc) TSstore[i,:,:]=thS return TSstore
def start_echoRDxstore(mc, particles, npart, precTS, pdyn, cinf, runname='echoRD', t_end=3600., output=60., start_offset=0., splitfac=10, maccoat=10., exfilt_method='Ediss'): [thS, npart] = pdyn.gridupdate_thS(particles.lat, particles.z, mc) drained = pd.DataFrame(np.array([])) leftover = 0 plotparticles_t(runname, 0., 0, particles, (thS / 100.).reshape(np.shape(npart)), mc) #loop through plot cycles dummy = np.floor(t_end / output) TSstore = np.zeros((int(dummy), np.shape(thS)[0], np.shape(thS)[1])) for i in np.arange(dummy.astype(int)): [particles, npart, thS, leftover, drained, t] = CAOSpy_rundx(i * output + start_offset, (i + 1) * output + start_offset, mc, pdyn, cinf, precTS, particles, leftover, drained, splitfac=splitfac, prec_2D=True, maccoat=maccoat, exfilt_method=exfilt_method) plotparticles_t(runname, t, i + 1, particles, (thS / 100.).reshape(np.shape(npart)), mc) TSstore[i, :, :] = thS return TSstore
def CAOSpy_rund_diffonly(tstart, tstop, mc, pdyn, cinf, precTS, particles, leftover, drained, dt_max=1., splitfac=10, prec_2D=False, saveDT=True, vertcalfac=1., latcalfac=1.): if run_from_ipython(): from IPython import display timenow = tstart prec_part = 0. #precipitation which is less than one particle to accumulate acc_mxinf = 0. #matrix infiltration may become very small - this shall handle that some particles accumulate to infiltrate exfilt_p = 0. #exfiltration from the macropores s_red = 0. #loop through time while timenow < tstop: [thS, npart] = pdyn.gridupdate_thS(particles.lat, particles.z, mc) if saveDT == True: #define dt as Courant/Neumann criterion dt_D = (mc.mgrid.vertfac.values[0])**2 / ( 6 * np.nanmax(mc.D[np.amax(thS), :])) dt_ku = -mc.mgrid.vertfac.values[0] / np.nanmax( mc.ku[np.amax(thS), :]) dt = np.amin([dt_D, dt_ku, dt_max, tstop - timenow]) else: if type(saveDT) == float: #define dt as pre-defined dt = np.amin([saveDT, tstop - timenow]) elif type(saveDT) == int: #define dt as modified Corant/Neumann criterion dt_D = (mc.mgrid.vertfac.values[0])**2 / ( 6 * np.nanmax(mc.D[np.amax(thS), :])) * saveDT dt_ku = -mc.mgrid.vertfac.values[0] / np.nanmax( mc.ku[np.amax(thS), :]) * saveDT dt = np.amin([dt_D, dt_ku, tstop - timenow]) #INFILTRATION [p_inf, prec_part, acc_mxinf] = cinf.pmx_infilt( timenow, precTS, prec_part, acc_mxinf, thS, mc, pdyn, dt, 0., prec_2D, particles.index[-1]) #drain all ponding // leftover <-> 0. p_inf.flag = 0 particles = pd.concat([particles, p_inf]) #DIFFUSION [particles, thS, npart, phi_mx] = pdyn.part_diffusion_split(particles, npart, thS, mc, dt, False, splitfac, vertcalfac, latcalfac) if run_from_ipython(): display.clear_output() display.display_pretty(''.join([ 'time: ', str(timenow), 's | precip: ', str(len(p_inf)), ' particles' ])) else: print 'time: ', timenow, 's' #CLEAN UP DATAFRAME drained = drained.append(particles[particles.flag == len(mc.maccols) + 1]) particles = particles[particles.flag != len(mc.maccols) + 1] pondparts = (particles.z < 0.) leftover = np.count_nonzero(-pondparts) particles.cell[particles.cell < 0] = mc.mgrid.cells.values particles = particles[pondparts] timenow = timenow + dt return (particles, npart, thS, leftover, drained, timenow)