def initParticle(self, accel, ori):
		X = []
		particle = Particle()
		particle.initWithIMU(accel, ori)
		for i in range(self.M):
			X.append(particle)
		return X
 def __init__(self, n, sprite):
     self.particles = []
     self.particleShape = createShape(PShape.GROUP)
     for i in range(n):
         p = Particle(sprite)
         self.particles.append(p)
         self.particleShape.addChild(p.getShape())
示例#3
0
	def _getPairEquivParticle(self, a, b) :
		result = Particle(a.mass + b.mass)
		ratio = a.mass / float(b.mass)
		result.location = getSegmentCut3d(a.location, b.location, ratio)
		result.velocity = add(a.velocity, b.velocity)

		return result
	def createParticleFromStateVector(self, mu, sigma):
		X = []
		for i in range(self.M):
			particle = Particle()
			particle.initWithStateVector(mu, sigma)
			X.append(particle)
		return X
示例#5
0
def test_particle_dist__bad_particle2():
    try:
        p = Particle(1., 2., 2., 2., 2.)
        p2 = "wrong"
        p.dist(p2)
    except TypeError:
        pass
def test_Particle_speed_should_remain_constant():
    almost_eq = approximately_eq(13)
    assert_speed_unchanged = assert_evolution(lambda:abs(p.vel), almost_eq)
    p = Particle(30, 40, 50, 60, 70)
    for dt in xrange(10,30,1):
        p.move(dt/1000.0)
        assert_speed_unchanged()
示例#7
0
    def update_child_bests(self, particle, best_neighbor, child):
        """Update the pbest and nbest of a child particle from its parent.

        In speculative execution this is necessary because the child
        particle doesn't know if the value that it found is better than the
        value the parent found at its position; it only updated its pbest in
        relation to its previous pbestval.
        Also, it doesn't know the value of the function at the nbest position
        that it guessed.  It has to get that from its parent.
        So, this function passes along the iteration 1 nbestval that was
        determined in pick_child and updates the iteration 2 pbest.  The
        child is at iteration 2 (minus nbest) after this method.

        Best is passed in separately from particle to be sure that the state
        of particle doesn't have to be changed in pick_child, because sometimes
        it's just a message that you really don't want to change.
        """
        comparator = self.specex.function.comparator
        # Passing along the nbestval from iteration 1
        if Particle.isbetter(best_neighbor.pbestval, child.nbestval,
                comparator):
            # In the ReproducePSO case this first line could be an assert, but
            # not in the PickBestChild case.
            child.nbestpos = best_neighbor.pbestpos
            child.nbestval = best_neighbor.pbestval
        # Set the pbest for iteration 2, and update the last branch
        if Particle.isbetter(particle.pbestval, child.pbestval, comparator):
            child.pbestpos = particle.pbestpos
            child.pbestval = particle.pbestval
            child.lastbranch[0] = False
        else:
            child.lastbranch[0] = True
	def setImageData(self, time_, keypointPairs):
		
		# If IMU data has not been arrived yet, do nothing
		if(self.isFirstTimeIMU):
			return
				
		# Count 
		self.count+=1
		
		########################
		print("===================================")
		print("step "+str(self.step))
		###########################
		
		# If first time, save mu and don't do anything else
		if(self.isFirstTimeCamera):
			self.isFirstTimeCamera = False
			self.mu1 = copy.deepcopy(self.mu) # save mu[t] as mu[t-1]
			self.t_camera = time_
			self.step += 1
			return
		
		# Lock IMU process
		self.lock = True
		
		# Get current time
		self.t1 = self.t
		self.t = time_
		self.dt = self.t - self.t1
		
		self.t1_camera = self.t_camera
		self.t_camera = time_
		dt_camera = self.t_camera - self.t1_camera
		
		# create particle from state vector
		self.X = self.createParticleFromStateVector(self.mu, self.sigma)
		
		# create X1 from mu[t-1]
		X1 = Particle()
		X1.initWithMu(self.mu1)
		
		self.saveXYZasCSV(self.X,"1") ##############################
		
		# exec particle filter
		self.X = self.pf.pf_step(self.X, X1, self.dt, dt_camera, keypointPairs, self.M)
		
		self.saveXYZasCSV(self.X,"2") ##############################
		
		# create state vector from particle set
		self.mu, self.sigma = self.createStateVectorFromParticle(self.X)		
		
		# save mu[t] as mu[t-1]
		self.mu1 = copy.deepcopy(self.mu) 
		
		# Step (camera only observation step)
		self.step += 1
		
		# Unlock IMU process
		self.lock = False
示例#9
0
def test_particle_update():
    p = Particle(1., 2., 3., 2., 2.)
    dvx, dvy, h = -2.0, 2.0, 1.0
    p.update(dvx, dvy, h)
    assert p.x == 4.0
    assert p.y == 5.0
    assert p.vx == 0.0
    assert p.vy == 4.0
示例#10
0
def test_particle_update_pos():
    p = Particle(1., 2., 3., 2., 2.)
    p.update_pos(1.0)
    assert p.x == 4.0
    assert p.y == 5.0
    p.update_pos(2.0)
    assert p.x == 8.0
    assert p.y == 9.0
示例#11
0
def test_particle_copy():
    p = Particle(1., 2., 3., 2., 2.)
    p2 = p.copy()
    assert p.m == p2.m
    assert p.x == p2.x
    assert p.y == p2.y
    assert p.vx == p2.vx
    assert p.vy == p2.vy
    assert p != p2
示例#12
0
    def initialise(self):
        """
        Generate the reference particle and the comparison particles.
        """

        self.reference_particle = Particle.factory()
        self.particles = [ Particle.factory()
                                        for i in range(0, self.num_particles) ]
        self.compute_distances()
        self.iteration = 1
示例#13
0
def init_particles(n_particles, min_, max_, dimensions):
    """
	Declaring the particles.
	"""
    for _ in range(n_particles):
        new_particle = Particle()
        val_ = random.sample(range(min_, max_), dimensions)
        p_best = objective(val_)
        new_particle.set_vals(val_)
        new_particle.set_pbest(p_best)
        particles.append(new_particle)
 def __init__(self, n):
     # It's just a list of particle objects.
     self.particles = []
     # The PShape to group all the particle PShapes.
     self.particleShape = createShape(GROUP)
     # Make all the Particles.
     sprite = loadImage("sprite.png")
     for i in range(n):
         p = Particle(sprite)
         self.particles.append(p)
         # Each particle's PShape gets added to the System PShape.
         self.particleShape.addChild(p.getShape())
示例#15
0
def populate(n):
    global bang_force
    #I support the big bang theory.
    particles = []
    for i in range(n):
        pos = vec2d((randrange(0,501)*1.00),(randrange(0,501)*1.00))
        dir_to_center = vec2d((pos.x-250), (pos.y-250)).normalized()
        bang_dir = dir_to_center * bang_force
        particle = Particle(pos)
        particle.addVec(bang_dir)
        particles.append(particle)
        particle = None
    return particles
示例#16
0
 def add_particle(self, gridcoord, particle_specs, body_specs):
   """ Add a new particle to the model with the given ParticleSpecs and BodySpecs objects.
   If there is already a particle at this coordinate, the existing particle's particle
   and body types are set to the given ParticleSpecs and BodySpecs objects.  """
   if not self.has_particle(gridcoord):
     particle = Particle(gridcoord, particle_specs, body_specs)
     self.gridcoord_to_particle[gridcoord] = particle
     self._particles.add(particle)
   else:
     particle = self.gridcoord_to_particle[gridcoord]
     particle.particle_specs = particle_specs
     particle.body_specs = body_specs
   return particle
示例#17
0
def test_particle_dist():
    p = Particle(1., 2., 2., 2., 2.)
    p2 = Particle(1., 5., 6., 2., 2.)
    p3 = Particle(1., 2., 6., 2., 2.)
    assert p.dist(p2) == 5.0
    assert p2.dist(p) == 5.0
    assert p.dist(p3) == 4.0
    assert p3.dist(p) == 4.0
    assert p2.dist(p3) == 3.0
    assert p3.dist(p2) == 3.0
    def resample_particles(self):
        '''Performs an importance particle resampling step based on the current particle weights.
        '''
        number_resampled_particles = self.filter_params.number_of_particles - self.filter_params.number_of_random_particles
        step = 1. / number_resampled_particles
        start_weight = uniform(0, step)
        current_particle = 0
        current_weight = self.particles[0].weight
        weight_sum = 0.

        #we add random particles to the particle set
        new_particles = list()
        for i in xrange(self.filter_params.number_of_random_particles):
            particle = Particle.random_particle(self.filter_params.neg_x_limit, self.filter_params.x_limit, self.filter_params.neg_y_limit, self.filter_params.y_limit, 1/self.filter_params.number_of_particles)
            weight_sum = weight_sum + particle.weight
            new_particles.append(particle)

        #we resample particles using low variance resampling
        for i in xrange(number_resampled_particles):
            weight = start_weight + i * step
            while weight > current_weight:
                current_particle = current_particle + 1
                current_weight = current_weight + self.particles[current_particle].weight
            particle = deepcopy(self.particles[current_particle])
            weight_sum = weight_sum + particle.weight
            new_particles.append(particle)

        for i in xrange(self.filter_params.number_of_particles):
            new_particles[i].weight = new_particles[i].weight / weight_sum

        return new_particles
	def predictionAndUpdateOneParticle_firsttime(self, X, dt, dt2, keypoints, step, P):
		
		"""
		FastSLAM1.0
		"""
		
		weight = 0.0 # weight (return value)
		weights = []
		
		# 姿勢予測 prediction of position
		X_ = Particle()
		X_.landmarks = X.landmarks
		X_.x = X.x + dt*X.v + dt2*X.a
		X_.v = X.v + dt*X.a
		X_.a = X.a
		X_.o = X.o
		
		for keypoint in keypoints:
			# previous landmark id
			prevLandmarkId = (step-1)*10000 + keypoint.prevIndex
			# new landmark id
			landmarkId = step*10000 + keypoint.index
			# The landmark is already observed or not?
			if(X_.landmarks.has_key(prevLandmarkId) == False):
				# Fisrt observation
				# Initialize landmark and append to particle
				landmark = Landmark()
				landmark.init(X_, keypoint, P, self.focus)
				X_.landmarks[landmarkId] = landmark
			else:
				print("Error on pf_step_camera_firsttime")
				
		self.count+=1
		
		return X_, weight
示例#20
0
 def reinit_particle(self):
     """
     Re initialize the particle with new values
     :return:
     """
     if self.check_nuclide_validity():
         # Here make a particle
         zz = self.spinBox_zz.value()
         nn = self.spinBox_nn.value()
         self.particle = Particle(zz, nn, self.ame_data, self.ring_dict[self.current_ring_name])
         self.particle.qq = self.spinBox_qq.value()
         self.particle.ke_u = self.doubleSpinBox_energy.value()
         self.particle.i_beam_uA = self.doubleSpinBox_beam_current.value()
         self.particle.f_analysis_mhz = self.doubleSpinBox_f_analysis.value()
         if not self.checkBox_circum.isChecked():
             self.particle.path_length_m = self.doubleSpinBox_path_length.value()
         else:
             self.particle.path_length_m = self.ring_dict[self.current_ring_name].circumference
class ParticleFilterSimulatedRobot:
    def __init__(self, world, sensordirections, x, y, orientation):
        self._robot = Particle(world, sensordirections)
        self._robot._set(x, y, orientation)
        self._robot.set_noise(0., 0., 0.) # TODO: use realistic values
        self._world = world
        self._image = pygame.image.load("assets/robot.png").convert_alpha()

    def connect_ultrasone(self, ports=['in2:i2c1'], offsets=[0]):
        pass

    def connect_ir(self, ports=['in1'], offsets=[0]):
        pass

    def turn(self, rad):
        # calc ticks
        self._robot = self._robot.move(rad, 0)
        self.draw()

    def turn_right(self, rad=0.5*math.pi):
        self.turn(rad)

    def turn_left(self, rad=0.5*math.pi):
        self.turn(-rad)

    def drive(self, dist=0.10):
        self._robot = self._robot.move(0, dist)
        self.draw()

    def sense_ultrasone(self):
        return self._robot._sense(self._world.screen, True)

    def sense_ir(self):
        return self._robot._sense(self._world.screen)

    def draw(self):
        rot_image = pygame.transform.rotate(self._image, float(-self._robot.orientation - (0.5*math.pi)) / (2.*math.pi) * 360)

        [x, y] = self._world.scale_point(self._robot.x,self._robot.y)
        self._world.screen.blit(rot_image, (x-25, y-22))
示例#22
0
    def dogfight(self, threats, dt):
        if self.current_dogfight_target == None or self.current_dogfight_target.health <= 0:
            self.current_dogfight_target = random.choice(threats)
        dist = (self.current_dogfight_target.pos - self.pos).sqr_magnitude()
        if dist < RANGE ** 2:
            self.assault(self.current_dogfight_target, dt)
        else:
            towards = (self.current_dogfight_target.pos - self.pos).normalized()
            target_vector = towards
            target_vector += self.get_fleet_target_vector()            
            target_vector = target_vector.normalized()
            self.turn_towards(target_vector, dt)
            self.speed_t += dt
            speed = math.sin(self.speed_t) * 2 + self.base_speed
            speed *= self.owning_civ.upgrade_stats['move_speed'] + 1
            self.velocity = V2.from_angle(self._angle) * speed

            self.thrust_particle_time += dt
            if self.thrust_particle_time > THRUST_PARTICLE_RATE:
                pvel = V2(random.random() - 0.5, random.random() - 0.5) * 5
                pvel += -self.velocity / 2
                p = Particle("assets/thrustparticle.png",1,self.pos,1,pvel)
                self.scene.game_group.add(p)
                self.thrust_particle_time -= THRUST_PARTICLE_RATE            
示例#23
0
def motion_update(particles, odom):
    """ Particle filter motion update
        Arguments:
        particles -- input list of particle represents belief p(x_{t-1} | u_{t-1})
                before motion update
        odom -- odometry to move (dx, dy, dh) in *robot local frame*
        Returns: the list of particles represents belief \tilde{p}(x_{t} | u_{t})
                after motion update
        references: https://github.com/mxie33/CS3630-robotics/tree/1c0d8c1e92d81e7f74f1930b9d2c64a35aab0062
    """

    motion_particles = []
    for prt in particles:
        odomGaussNoiseApplied = add_odometry_noise(odom, ODOM_HEAD_SIGMA,
                                                   ODOM_TRANS_SIGMA)
        dx = odomGaussNoiseApplied[0]
        dy = odomGaussNoiseApplied[1]
        dh = odomGaussNoiseApplied[2]
        xRotatedH, yRotatedH = rotate_point(dx, dy, prt.h)
        newY = prt.y + yRotatedH
        newX = prt.x + xRotatedH
        newH = prt.h + dh
        motion_particles.append(Particle(newX, newY, newH))
    return motion_particles
def motion_update(particles, odom):
    """ Particle filter motion update

        Arguments: 
        particles -- input list of particle represents belief p(x_{t-1} | u_{t-1})
                before motion update
        odom -- odometry to move (dx, dy, dh) in *robot local frame*

        Returns: the list of particles represents belief \tilde{p}(x_{t} | u_{t})
                after motion update
    """

    # ---------- Resample particles with motion model ----------
    motion_particles = []

    for p in particles:
        sample_dx = odom[0] + random.gauss(0, ODOM_TRANS_SIGMA)
        sample_dy = odom[1] + random.gauss(0, ODOM_TRANS_SIGMA)
        sample_dh = odom[2] + random.gauss(0, ODOM_HEAD_SIGMA)
        psample_dx, psample_dy = rotate_point(sample_dx, sample_dy, p.h)
        psample = Particle(p.x + psample_dx, p.y + psample_dy, p.h + sample_dh)
        motion_particles.append(psample)

    return motion_particles
示例#25
0
def motion_update(particles, odom):
    """ Particle filter motion update

        Arguments: 
        particles -- input list of particle represents belief p(x_{t-1} | u_{t-1})
                before motion update
        odom -- odometry to move (dx, dy, dh) in *robot local frame*

        Returns: the list of particles represents belief \tilde{p}(x_{t} | u_{t})
                after motion update
    """
    motion_particles = []

    dx, dy, dh = odom

    for particle in particles:
        part_x, part_y, part_h = particle.xyh
        h = add_gaussian_noise(part_h + dh, ODOM_HEAD_SIGMA)

        dx_new, dy_new = rotate_point(add_gaussian_noise(dx, ODOM_TRANS_SIGMA), add_gaussian_noise(dy, ODOM_TRANS_SIGMA), h)

        motion_particles.append(Particle(part_x + dx_new, part_y + dy_new, h))

    return motion_particles
示例#26
0
def q_one_one():
    c1 = c2 = 2.05

    swarm = [Particle(x_y_range, x_y_range) for i in range(100)]
    velocity_position_fn = simple_velocity(x_y_range, x_y_range, c1, c2)

    avg_fit, best_fit, g_best = simulation(
        termination_condition=termination_condition(iterations),
        swarm=swarm,
        fitness_function=six_hump_camelback,
        velocity_position_update=velocity_position_fn)
    test = "Simple PSO"
    title = f"Fitness vs Iterations: {test}"
    data = [("Average Fitness", avg_fit)]
    data.append(("Best Fitness", best_fit))

    graph(title, data)
    print(test)
    print(f"\t c1: {c1}")
    print(f"\t c2: {c2}")
    print(f"\t iterations: {iterations}")
    print(f"\t particles: {particle_count}")
    print(f"\t best fitness: {six_hump_camelback(g_best[0],g_best[1])}")
    print(f"\t best x,y: {g_best[0]} {g_best[1]}")
示例#27
0
def main():
    # Keep track of global best solution and its index within the swarm   
    gBest = 100000
    gBestIndex = 0
    
    # Make the swarm - create a list of Particles of size NUM_PARTICLES
    swarm = [Particle(0,100,50) for i  in range(NUM_PARTICLES)]
    
    # Set the loop counter and stopping condition
    generations = 0
    converged = False
    while(generations < MAX_GENERATIONS and (not converged)):
        
        # Calculate the fitness values for the swarm and check if we have a solution
        for i in range(NUM_PARTICLES):
            swarm[i].calculateFitness()
            converged = converged or (swarm[i].fitness == 0)
              
        # Print some output at this point 
        print "[] Generation: " + str(generations)
        for i in range(NUM_PARTICLES):
            print swarm[i]
        
        # Set the global best based on the swarm at this point    
        for i in range(NUM_PARTICLES):
            if (swarm[i].pBest < gBest):
                gBest = swarm[i].pBest
                gBestIndex = i
        
        # Update all but the global best particle using Eberhart & Kennedy's equation        
        for i in range(NUM_PARTICLES):
            if (i != gBestIndex):
                swarm[i].update(gBest)
        
        # Set the next time step        
        generations = generations + 1
示例#28
0
def motion_update(particles, odom):
    """ Particle filter motion update

        Arguments:
        particles -- input list of particle represents belief p(x_{t-1} | u_{t-1})
                before motion update
        odom -- odometry to move (dx, dy, dh) in *robot local frame*

        Returns: the list of particles represents belief \tilde{p}(x_{t} | u_{t})
                after motion update
    """
    motion_particles = []

    for particle in particles:
        x, y, h = particle.xyh
        dx, dy, dh = odom
        c, d = rotate_point(dx, dy, h)
        nx, ny, nh = add_odometry_noise((x + c, y + d, h + dh),
                                        heading_sigma=ODOM_HEAD_SIGMA,
                                        trans_sigma=ODOM_TRANS_SIGMA)
        newParticle = Particle(nx, ny, nh % 360)
        motion_particles.append(newParticle)

    return motion_particles
	def f_IMU(self, X, dt, dt2, accel, ori, noise):
		""" Transition model
		- 状態方程式
			x_t = f(x_t-1, u) + w
			w ~ N(0, sigma)
		"""
	
		X_new = Particle()
		X_new.landmarks = X.landmarks
	
		# Transition with noise (only x,v)		
		X_new.x = X.x + dt*X.v + dt2*X.a + noise
		X_new.v = X.v + dt*X.a
		#X_new.v = X.v + dt*X.a + noise*25
		#X_new.v = X.v + dt*X.a + noise*50
		X_new.a = accel
		X_new.o = ori
	
		return X_new
示例#30
0
文件: pf_gui.py 项目: t151848p/labs
        threading.Thread.__init__(self, daemon=True)
        self.filter = particle_filter
        self.gui = gui

    def run(self):
        while True:
            estimated = self.filter.update()
            self.gui.show_particles(self.filter.particles)
            self.gui.show_mean(estimated[0], estimated[1], estimated[2],
                               estimated[3])
            self.gui.show_robot(self.filter.robbie)
            self.gui.updated.set()


if __name__ == "__main__":
    grid = CozGrid(Map_filename)

    # initial distribution assigns each particle an equal probability
    particles = Particle.create_random(PARTICLE_COUNT, grid)
    robbie = Robot(Robot_init_pose[0], Robot_init_pose[1], Robot_init_pose[2])
    particlefilter = ParticleFilter(particles, robbie, grid)

    if Use_GUI:
        gui = GUIWindow(grid)
        filter_thread = ParticleFilterThread(particlefilter, gui)
        filter_thread.start()
        gui.start()
    else:
        while True:
            particlefilter.update()
示例#31
0
def init_molecule():
    myParticle1 = Particle(np.array([0.2, 0.2]), 1)
    myParticle2 = Particle(np.array([0.8, 0.8]), 2)
    myMolecule = Molecule(myParticle1, myParticle2, 1, 0.5)
    return myMolecule
示例#32
0
 def __init__(self, n, sprite):
     self.particleShape = createShape(PShape.GROUP)
     self.particles = [Particle(sprite) for _ in range(n)]
     for p in self.particles:
         self.particleShape.addChild(p.getShape())
示例#33
0
    precisions = []
    times = []

    for executions in range(0, 100):

        print(str(executions) + "%")

        start_time = time.time()

        particles = []

        k_means = KMeans()

        # Particles Initialization
        for i in range(population_size):
            p = Particle()

            num_clusters = random.randint(2, 7)

            plist = [num_clusters, ]
            plist.extend([random.uniform(0, 10) for i in range(0, k_means.dimens * 7)])

            p.current_position = array(plist)
            p.best_position = p.current_position
            p.fitness = 0.0
            p.velocity = 0.0
            particles.append(p)

        i = 0

        global_best = Particle()
	def predictionAndUpdateOneParticle(self, X, dt, dt2, noise, keypoints, step, P, X1, P1, dt_camera, noise_o):
		
		"""
		FastSLAM1.0
		"""
		
		weight = 0.0 # weight (return value)
		weights = []
		count_of_first_observation = 0
		
		# 姿勢予測 prediction of position
		X_ = Particle()
		X_.landmarks = X.landmarks
		X_.x = X.x + dt*X.v + dt2*X.a + noise
		#X_.v = X.v + dt*X.a
		#X_.v = X.v + dt*X.a + noise*25
		#X_.v = X.v + dt*X.a + noise*50
		X_.a = X.a
		X_.o = X.o
		#X_.o = X.o + noise_o
		
		# 速度調整 velocity adjustment
		#X_.v = ((X_.x - X1.x)/dt_camera)
		X_.v = ((X_.x - X1.x)/dt_camera)*0.25
		#X_.v = ((X_.x - X1.x)/dt_camera)*0.5
		
		# 共面条件モデルのための計算 Calc for Coplanarity
		xyz = np.array([X_.x[0] - X1.x[0], X_.x[1] - X1.x[1], X_.x[2] - X1.x[2]])
		
		# 前回ランドマークの全てのキーを取得しておく あとで消す
		prevLandmarkKeys = []
		for key in X_.landmarks:
			prevLandmarkKeys.append(key)
		
		for keypoint in keypoints:
			
			# ---------------------------- #
			# Calc weight of Inverse Depth #
			# ---------------------------- #
			# previous landmark id
			prevLandmarkId = (step-1)*10000 + keypoint.prevIndex
			# new landmark id
			landmarkId = step*10000 + keypoint.index
			# The landmark is already observed or not?
			if(X_.landmarks.has_key(prevLandmarkId) == False):
				# Fisrt observation
				# Initialize landmark and append to particle
				landmark = Landmark()
				landmark.initPrev(X1, keypoint, P1, self.focus)
				X_.landmarks[landmarkId] = landmark
				if(self.count == 0):
					count_of_first_observation += 1
			else:
				# Already observed
				X_.landmarks[landmarkId] = X_.landmarks[prevLandmarkId]
				#del X_.landmarks[prevLandmarkId]
			# Update landmark and calc weight
			# Observation z				
			z = np.array([keypoint.x, keypoint.y])
			# Calc h and H (Jacobian matrix of h)
			h, Hx, H = X_.landmarks[landmarkId].calcObservation(X_, self.focus)
			# Kalman filter (Landmark update)
			S = H.dot(X_.landmarks[landmarkId].sigma.dot(H.T)) + self.R
			Sinv = np.linalg.inv(S)
			K = X_.landmarks[landmarkId].sigma.dot(H.T.dot(Sinv))
			X_.landmarks[landmarkId].mu += K.dot(z - h)
			X_.landmarks[landmarkId].sigma = X_.landmarks[landmarkId].sigma - K.dot(H.dot(X_.landmarks[landmarkId].sigma))
			# Calc weight
			w = 0.0
			try:
				#w = (1.0 / (math.sqrt( np.linalg.det(2.0 * math.pi * S) ))) * np.exp( -0.5 * ( (z-h).T.dot(Sinv.dot(z-h)) ) )
				#w = (1.0 / (math.sqrt( np.linalg.det(2.0 * math.pi * self.R) ))) * np.exp( -0.5 * ( (z-h).T.dot(self.Rinv.dot(z-h)) ) )
				# log likelihood
				#w = np.log(1.0 / (math.sqrt( np.linalg.det(2.0 * math.pi * self.R) ))) + ( -0.5 * ( (z-h).T.dot(self.Rinv.dot(z-h)) ) )
				w = ( -0.5 * ( (z-h).T.dot(self.Rinv.dot(z-h)) ) )
			except:
				print("Error on calc inverse weight ******")
				w = 0.0
			
			# -------------------------- #
			# Calc weight of Coplanarity #
			# -------------------------- #
			# Generate uvw1 (time:t-1)
			uvf1 = np.array([keypoint.x1, -keypoint.y1, -self.focus]) # Camera coordinates -> Device coordinates
			rotX = Util.rotationMatrixX(X1.o[0])
			rotY = Util.rotationMatrixY(X1.o[1])
			rotZ = Util.rotationMatrixZ(X1.o[2])
			# uvw1 = R(z)R(y)R(x)uvf1
			uvw1 = np.dot(rotZ,np.dot(rotY,np.dot(rotX,uvf1)))
			uvw1 /= 100.0 # Adjust scale to decrease calculation error. This doesn't have an influence to estimation.
			# Generate uvw2 (time:t)
			uvf2 = np.array([keypoint.x, -keypoint.y, -self.focus]) # Camera coordinates -> Device coordinates
			rotX = Util.rotationMatrixX(X_.o[0])
			rotY = Util.rotationMatrixY(X_.o[1])
			rotZ = Util.rotationMatrixZ(X_.o[2])
			# uvw2 = R(z)R(y)R(x)uvf2
			uvw2 = np.dot(rotZ,np.dot(rotY,np.dot(rotX,uvf2)))
			uvw2 /= 100.0 # Adjust scale to decrease calculation error. This doesn't have an influence to estimation.
			# Generate coplanarity matrix
			coplanarity_matrix = np.array([xyz,uvw1,uvw2])
			# Calc determinant
			determinant = np.linalg.det(coplanarity_matrix)
			# Weight
			w_coplanarity = 0.0
			try:
				#w_coplanarity = (1.0 / (math.sqrt( 2.0 * math.pi * self.noise_coplanarity**2 ))) * np.exp((determinant**2) / (-2.0 * (self.noise_coplanarity**2)) )
				# log likelihood				
				#w_coplanarity = np.log(1.0 / (math.sqrt( 2.0 * math.pi * self.noise_coplanarity**2 ))) + ((determinant**2) / (-2.0 * (self.noise_coplanarity**2)) )				
				w_coplanarity = ((determinant**2) / (-2.0 * (self.noise_coplanarity**2)) )
			except:
				print("Error on calc coplanarity weight ******")
				w_coplanarity = 0.0
			
			# --------------------------- #
			# inverse depth * coplanarity #
			# --------------------------- #
			if(self.count == 0):
				#print(w),
				#print(w_coplanarity)
				pass
			
			w = w + w_coplanarity  # use inverse depth * coplanarity log likelihood
			#w = w_coplanarity      # use only coplanarity log likelihood
			#w = w                  # use only inverse depth log likelihood
			
			weights.append(w)
			
		# ----------------------------------- #
		# sum log likelihood of all keypoints #
		# ----------------------------------- #
		for i,w in enumerate(weights):
			if(i==0):
				weight = w
			else:
				weight += w
				
		# ----------------------------- #
		# Average of log likelihood sum #
		# ----------------------------- #
		weight /= float(len(weights))
		
		###############################
		#print("weight "+str(weight))
		if(self.count == 0):
			#print("weight "+str(weight))
			#print("first_ratio "+str(float(count_of_first_observation)/float(len(keypoints)))),
			#print("("+str(count_of_first_observation)+"/"+str(len(keypoints))+")")
			pass
		###########################
			
		# 前回ランドマークをすべて消す
		for key in prevLandmarkKeys:
			del X_.landmarks[key]
			
		self.count+=1
		
		return X_, weight
示例#35
0
from particle import Particle

if __name__ == '__main__':
    alpha = [0.1, 0.1]
    n_particle = 20
    x, y = 9, 3
    lengthLim = [[2 * x / 5, x], [2 * y / 11, y]]

    iter_ = 0
    maxIter_ = 200
    minAvgFitDiff = 0.05
    minAvgPosiDiff = 0.075

    particles = [
        Particle([
            rand.uniform(lengthLim[0][0], lengthLim[0][1]),
            rand.uniform(lengthLim[1][0], lengthLim[1][1])
        ]) for _ in range(n_particle)
    ]
    # initial global best position is position of first particle
    globBestPosi = particles[0].posi

    fig = plt.figure()
    plot = fig.add_subplot(111, projection='3d')
    s = plotGraph(plot, particles, x, y, lengthLim)

    while iter_ < maxIter_ and calAvgFitDiff(
            x, y, particles) > minAvgFitDiff and calAvgPosiDiff(
                x, y, particles) > minAvgPosiDiff:
        for p in particles:
            p.updateBest(x, y)
            globBestPosi = compFit(globBestPosi, p.posi, x, y)
 def add_particle(self):
     self.particles.append(Particle(self.origin))
def measurement_update(particles, measured_marker_list, grid):
    """ Particle filter measurement update

        Arguments:
        particles -- input list of particle represents belief \tilde{p}(x_{t} | u_{t})
                before meansurement update (but after motion update)

        measured_marker_list -- robot detected marker list, each marker has format:
                measured_marker_list[i] = (rx, ry, rh)
                rx -- marker's relative X coordinate in robot's frame
                ry -- marker's relative Y coordinate in robot's frame
                rh -- marker's relative heading in robot's frame, in degree

                * Note that the robot can only see markers which is in its camera field of view,
                which is defined by ROBOT_CAMERA_FOV_DEG in setting.py
				* Note that the robot can see mutliple markers at once, and may not see any one

        grid -- grid world map, which contains the marker information,
                see grid.py and CozGrid for definition
                Can be used to evaluate particles

        Returns: the list of particles represents belief p(x_{t} | u_{t})
                after measurement update
    """
    measured_particles = []

    if len(measured_marker_list
           ) <= 0:  # If there are no markers seen, do not update measurement
        return particles

    weights = []

    for particle in particles:
        # If the particle is not on the map, give it a weight of zero
        if not grid.is_in(particle.x, particle.y) or not grid.is_free(
                particle.x, particle.y):
            weights.append(0)
            continue

        probability = 1.0

        # If there are no markers in the secondary list, but they are in actual measurement, do not use this particle
        secondary_marker_list = particle.read_markers(grid)

        if len(secondary_marker_list) <= 0:
            weights.append(0)
            continue

        # Pair observarble markets by distance
        for measured_marker in measured_marker_list:
            highest_probability = -0.1
            max_probability_pair = None

            # Current Particle observes fewer markers than the robot
            if len(secondary_marker_list) <= 0:
                break

            for observed_marker in secondary_marker_list:

                distance_between_markers = math.sqrt(
                    measured_marker[0]**2 +
                    measured_marker[1]**2) - math.sqrt(observed_marker[0]**2 +
                                                       observed_marker[1]**2)

                angle_between_markers = diff_heading_deg(
                    measured_marker[2], observed_marker[2])

                current_probability = np.exp(-(distance_between_markers**2) /
                                             (2 * MARKER_TRANS_SIGMA**2) -
                                             (angle_between_markers**2) /
                                             (2 * MARKER_ROT_SIGMA**2))

                if current_probability > highest_probability:
                    highest_probability = current_probability
                    max_probability_pair = observed_marker

            if max_probability_pair != None:
                secondary_marker_list.remove(max_probability_pair)

            probability *= highest_probability
        weights.append(probability)

    # Normalize all current weights
    weights = np.divide(weights, np.sum(weights))

    # Resample all particles, 3% random noise
    measured_particles = np.random.choice(particles,
                                          size=PARTICLE_COUNT -
                                          int(PARTICLE_COUNT * 0.03),
                                          replace=True,
                                          p=weights)

    # Generate random noise to help with the kidnapped robot problem, 3% of actual number of particles
    measured_particles = np.ndarray.tolist(measured_particles) \
                            + Particle.create_random(int(PARTICLE_COUNT*0.03), grid)

    return measured_particles
示例#38
0
def measurement_update(particles, measured_marker_list, grid):
    """ Particle filter measurement update
        Arguments:
        particles -- input list of particle represents belief \tilde{p}(x_{t} | u_{t})
                before meansurement update (but after motion update)
        measured_marker_list -- robot detected marker list, each marker has format:
                measured_marker_list[i] = (rx, ry, rh)
                rx -- marker's relative X coordinate in robot's frame
                ry -- marker's relative Y coordinate in robot's frame
                rh -- marker's relative heading in robot's frame, in degree
                * Note that the robot can only see markers which is in its camera field of view,
                which is defined by ROBOT_CAMERA_FOV_DEG in setting.py
				* Note that the robot can see mutliple markers at once, and may not see any one
        grid -- grid world map, which contains the marker information,
                see grid.py and CozGrid for definition
                Can be used to evaluate particles
        Returns: the list of particles represents belief p(x_{t} | u_{t})
                after measurement update
    """
    num_random_sample = 25
    measured_particles = []
    weight = []

    if len(measured_marker_list) > 0:
        for particle in particles:
            x, y = particle.xy
            if grid.is_in(x, y) and grid.is_free(x, y):
                markers_visible_to_particle = particle.read_markers(grid)
                markers_visible_to_robot = measured_marker_list.copy()

                marker_pairs = []
                while len(markers_visible_to_particle) > 0 and len(markers_visible_to_robot) > 0:
                    all_pairs = product(markers_visible_to_particle, markers_visible_to_robot)
                    pm, rm = min(all_pairs, key=lambda p: grid_distance(p[0][0], p[0][1], p[1][0], p[1][1]))
                    marker_pairs.append((pm, rm))
                    markers_visible_to_particle.remove(pm)
                    markers_visible_to_robot.remove(rm)

                prob = 1.
                for pm, rm in marker_pairs:
                    d = grid_distance(pm[0], pm[1], rm[0], rm[1])
                    h = diff_heading_deg(pm[2], rm[2])

                    exp1 = (d**2)/(2*setting.MARKER_TRANS_SIGMA**2)
                    exp2 = (h**2)/(2*setting.MARKER_ROT_SIGMA**2)

                    likelihood = math.exp(-(exp1+exp2))
                    # The line is the key to this greedy algorithm
                    # prob *= likelihood
                    print(setting.DETECTION_FAILURE_RATE)
                    prob *= max(likelihood, setting.DETECTION_FAILURE_RATE*setting.SPURIOUS_DETECTION_RATE)

                # In this case, likelihood is automatically 0, and max(0, DETECTION_FAILURE_RATE) = DETECTION_FAILURE_RATE
                prob *= (setting.DETECTION_FAILURE_RATE**len(markers_visible_to_particle))
                # Probability for the extra robot observation to all be spurious
                prob *= (setting.SPURIOUS_DETECTION_RATE**len(markers_visible_to_robot))
                weight.append(prob)

            else:
                weight.append(0.)
    else:
        weight = [1.]*len(particles)

    norm = float(sum(weight))

    if norm != 0:
        weight = [i/norm for i in weight]
        measured_particles = Particle.create_random(num_random_sample, grid)
        measured_particles += np.random.choice(particles, setting.PARTICLE_COUNT-num_random_sample, p=weight).tolist()
    else:
        measured_particles = Particle.create_random(setting.PARTICLE_COUNT, grid)

    return measured_particles
示例#39
0
def pname(lbl: str, name: str) -> (GenParticle, Particle):
    """ GenParticle and Particle from particle label """
    p = Particle.findall(lbl)[0]
    return (GenParticle(name, p.mass), p)
 def __init__(self, world, sensordirections, x, y, orientation):
     self._robot = Particle(world, sensordirections)
     self._robot._set(x, y, orientation)
     self._robot.set_noise(0., 0., 0.) # TODO: use realistic values
     self._world = world
     self._image = pygame.image.load("assets/robot.png").convert_alpha()
示例#41
0
def test_particle_update__bad_dvy():
    try:
        p = Particle(1., 2., 2., 2., 2.)
        p.update(-2.0, 2.0, "lol")
    except TypeError:
        pass
示例#42
0
def measurement_update(particles, measured_marker_list, grid):
    """ Particle filter measurement update

        Arguments:
        particles -- input list of particle represents belief \tilde{p}(x_{t} | u_{t})
                before meansurement update (but after motion update)

        measured_marker_list -- robot detected marker list, each marker has format:
                measured_marker_list[i] = (rx, ry, rh)
                rx -- marker's relative X coordinate in robot's frame
                ry -- marker's relative Y coordinate in robot's frame
                rh -- marker's relative heading in robot's frame, in degree

                * Note that the robot can only see markers which is in its camera field of view,
                which is defined by ROBOT_CAMERA_FOV_DEG in setting.py
				* Note that the robot can see mutliple markers at once, and may not see any one

        grid -- grid world map, which contains the marker information,
                see grid.py and CozGrid for definition
                Can be used to evaluate particles

        Returns: the list of particles represents belief p(x_{t} | u_{t})
                after measurement update
    """

    weights = [1.0 for _ in range(len(particles))]

    for i, particle in enumerate(particles):

        if not grid.is_in(particle.x, particle.y) or not grid.is_free(
                particle.x, particle.y):
            weights[i] = 0.0
            continue

        particle_markers = particle.read_markers(grid)

        for robot_marker in measured_marker_list:
            new_robot_marker = add_marker_measurement_noise(
                robot_marker, MARKER_TRANS_SIGMA, MARKER_ROT_SIGMA)

            if len(particle_markers) > 0:
                min_distance, min_angle, min_particle_marker = closest_particle_marker(
                    particle_markers, new_robot_marker)
                particle_markers.remove(min_particle_marker)
                exponent = ((min_distance ** 2) / (2 * (MARKER_TRANS_SIGMA ** 2))) + \
                           ((min_angle ** 2) / (2 * (MARKER_ROT_SIGMA ** 2)))
                weights[i] *= numpy.exp(-exponent)
            else:
                weights[i] *= DETECTION_FAILURE_RATE

        for _ in particle_markers:
            weights[i] *= SPURIOUS_DETECTION_RATE

        weights[i] = max(weights[i],
                         SPURIOUS_DETECTION_RATE * DETECTION_FAILURE_RATE)

    weight_sum = sum(weights)
    if weight_sum == 0:
        weights = [1.0 / len(particles) for _ in range(len(particles))]
    else:
        for i in range(len(weights)):
            weights[i] /= weight_sum

    random_particles = Particle.create_random(250, grid)

    chosen_particles = numpy.random.choice(
        particles,
        len(particles) - len(random_particles), True, weights)

    measured_particles = numpy.concatenate(
        (chosen_particles, random_particles))

    return measured_particles
示例#43
0
def test_particle_update__h_lt_0():
    try:
        p = Particle(1., 2., 2., 2., 2.)
        p.update(-2.0, 2.0, -1.0)
    except ValueError:
        pass
示例#44
0
            tofill[k] = np.nan

        tofill['min_bq_pt'] = min([ip.pt()
                                   for ip in bq]) if len(bq) else np.nan
        tofill['max_bq_eta'] = max([abs(ip.eta())
                                    for ip in bq]) if len(bq) else np.nan

        tofill['n_jpsi'] = len(jpsis)

        daus = [
            jpsi.daughter(idau).pdgId()
            for idau in range(jpsi.numberOfDaughters())
        ]
        if verbose:
            print('\t%s %s pt %3.2f,\t genealogy: ' %
                  (Particle.from_pdgid(jpsi.pdgId()), str(daus), jpsi.pt()),
                  end='')
        ancestors = []
        if verbose: print('\t', printAncestors(jpsi, ancestors, verbose=True))
        else: printAncestors(jpsi, ancestors, verbose=False)

        # only save jpsi->mumu
        if sum([abs(dau) == 13 for dau in daus]) < 2: continue

        if len(ancestors) == 0: continue

        first_ancestor = ancestors[-1]
        if first_ancestor.pdgId() in diquarks:
            first_ancestor = ancestors[-2]

        # compute the distance between primary and secondary vtx
示例#45
0
def task_b():
    p1 = Particle(Vec3(-1, 1, 0.0), Vec3(0, 0, 0.0), 5.0)
    p2 = Particle(Vec3(3, 1, 0.0), Vec3(0, 0, 0.0), 4.0)
    p3 = Particle(Vec3(-1.0, -2.0, 0.0), Vec3(0, 0, 0.0), 3.0)

    # This particle setup was calculated by hand
    n_body_system = NParticleSimulation([p1, p2, p3])

    n_steps = 100000
    h = 0.0001

    # in unserem Beispile ist e_kin_alt natürlich 0
    e_kin_alt = energie_kin([p.mass for p in n_body_system.particles], [p.velocity for p in n_body_system.particles])

    dist1 = [distance(p1.position, p2.position)]
    dist2 = [distance(p2.position, p3.position)]
    dist3 = [distance(p1.position, p3.position)]

    positions = [[p.position for p in n_body_system.particles]]

    # Berechnung des totalen Energiefehlers mit Hilfe der beiden Energie Funktionen
    energy_tot = [energie_pot(positions[0], positions[0], [p1.mass, p2.mass, p3.mass]) + energie_kin(
        [p.mass for p in n_body_system.particles], [p.velocity for p in n_body_system.particles]) - e_kin_alt]


    for i in range(n_steps):
        print("\rcalculation progress: t = {:.2f} / {:.2f} ({:.2f}%)".format(i * h, n_steps * h, 100 * i / n_steps),
              end="")
        n_body_system.step_rk4(h)

        positions.append([p.position for p in n_body_system.particles])
        dist1.append(distance(p1.position, p2.position))
        dist2.append(distance(p2.position, p3.position))
        dist3.append(distance(p1.position, p3.position))

        energy_tot.append(
            energie_pot(positions[0], positions[i + 1], [p.mass for p in n_body_system.particles]) + energie_kin(
                [p.mass for p in n_body_system.particles],
                [p.velocity for p in n_body_system.particles]) - e_kin_alt)

    minima = (minima_der_minima(minima_suchen(dist1, h) + minima_suchen(dist2, h) + minima_suchen(dist3, h)))

    with open('mini{}.txt'.format(h), 'w+') as schreiberling:
        schreiberling.writelines("%s\n" % element for element in minima)

    print("\rcalculation progress: done.")

    xax = np.linspace(0, h * n_steps, int(n_steps + 1))

    plt.figure(1, figsize=(8, 8))

    plt.plot(xax, dist1, label='distance part 1, part 2')
    plt.plot(xax, dist2, label='distance part 2, part 3')
    plt.plot(xax, dist3, label='distance part 1, part 3')

    plt.yscale('log')
    plt.xlabel('time')
    plt.ylabel('distance')
    plt.legend()

    plt.savefig('distances{}.png'.format(h))

    plt.figure(2, figsize=(8, 8))

    plt.plot(xax, energy_tot)

    plt.yscale('log')
    plt.xlabel('timestep')
    plt.ylabel('error of the total energy of the system')
    plt.title('development of the total energy over time')

    plt.savefig('energyerror{}.png'.format(h))

    plot_animation(positions, h, save_as="particle_animation{}.mp4".format(h))
示例#46
0
 def __init__(self, x, y, orien, particle_size = 50):
     self.world = World()
     self.particles = [Particle(x, y, random.random()* 2.*math.pi) for i in range(particle_size)]
     self.robot = Particle(x, y, orien, is_robot=True)
     self.particle_size = particle_size
                       round(circleR), 1)

my_particles = []

# initialising the new particle size and position values
radius, pos_x, pos_y = randomParticleParm()

for i in range(PN):
    while outsideCircle(circleX, circleY, radius, pos_x, pos_y) or overlap(
            my_particles, radius, pos_x, pos_y):
        radius, pos_x, pos_y = randomParticleParm()

    p = Particle(screen=screen,
                 x=pos_x,
                 y=pos_y,
                 radius=radius,
                 thickness=THICKNESS,
                 angle=100,
                 speed=2)
    my_particles.append(p)
    radius, pos_x, pos_y = randomParticleParm()

for p in my_particles:
    p.display()

pygame.display.flip()

running = True

while running:
    for event in pygame.event.get():
示例#48
0
def grade(Robot_init_pose, Dh_circular, Robot_speed):
    grid = CozGrid(Map_filename)

    # initial distribution assigns each particle an equal probability
    particles = Particle.create_random(PARTICLE_COUNT, grid)
    robbie = Robot(Robot_init_pose[0], Robot_init_pose[1], Robot_init_pose[2])
    particlefilter = ParticleFilter(particles, robbie, grid)

    score = 0

    # 1. steps to build tracking
    steps_built_track = 9999
    for i in range(0, Steps_build_tracking):

        est_pose = particlefilter.update(Dh_circular, Robot_speed)

        if grid_distance(est_pose[0], est_pose[1], robbie.x, robbie.y) < Err_trans \
                and math.fabs(diff_heading_deg(est_pose[2], robbie.h)) < Err_rot \
                and i+1 < steps_built_track:
            steps_built_track = i + 1

    #print("steps_built_track =", steps_built_track)
    if steps_built_track < 50:
        score = 50
    elif steps_built_track < 100:
        score = 100 - steps_built_track
    else:
        score = 0

    print("\nPhrase 1")
    print("Number of steps to build track :", steps_built_track, "/",
          Steps_build_tracking)
    acc_err_trans, acc_err_rot = 0.0, 0.0
    max_err_trans, max_err_rot = 0.0, 0.0
    step_track = 0

    # 2. test tracking

    for i in range(0, Steps_stable_tracking):

        est_pose = particlefilter.update(Dh_circular, Robot_speed)

        err_trans = grid_distance(est_pose[0], est_pose[1], robbie.x, robbie.y)
        acc_err_trans += err_trans
        if max_err_trans < err_trans:
            max_err_trans = err_trans

        err_rot = math.fabs(diff_heading_deg(est_pose[2], robbie.h))
        acc_err_rot += err_rot
        if max_err_rot < err_rot:
            max_err_rot = err_rot

        if grid_distance(est_pose[0], est_pose[1], robbie.x, robbie.y) < Err_trans \
                and math.fabs(diff_heading_deg(est_pose[2], robbie.h)) < Err_rot:
            step_track += 1

    if step_track > 90:
        score += 50
    elif step_track > 40:
        score += step_track - 40
    else:
        score += 0

    print("\nPhrase 2")
    print("Number of steps error in threshold :", step_track, "/",
          Steps_stable_tracking)
    print("Average translational error :{:.2f}".format(acc_err_trans /
                                                       Steps_stable_tracking))
    print("Average rotational error :{:.2f} deg".format(acc_err_rot /
                                                        Steps_stable_tracking))
    print("Max translational error :{:.2f}".format(max_err_trans))
    print("Max rotational error :{:.2f} deg".format(max_err_rot))

    print("\nexample score =", score)
    return score
示例#49
0
class mainWindow(QMainWindow, Ui_MainWindow, UI_Interface):
    """
    The main class for the GUI window
    """

    def __init__(self):
        """
        The constructor and initiator.
        :return:
        """
        # initial setup
        super(mainWindow, self).__init__()
        self.setupUi(self)

        # create an instance of the table data and give yourself as UI Interface
        self.ame_data = AMEData(self)

        # take care about ring combo
        self.ring_dict = Ring.get_ring_dict()
        keys = list(self.ring_dict.keys())
        keys.sort()
        self.comboBox_ring.addItems(keys)
        self.current_ring_name = ''

        self.comboBox_ring.setCurrentIndex(4)
        self.on_comboBox_ring_changed(4)

        # fill combo box with names
        self.comboBox_name.addItems(self.ame_data.names_list)

        # UI related stuff
        self.setup_table_view()
        self.connect_signals()

        # A particle to begin with
        self.particle = None
        self.comboBox_name.setCurrentIndex(6)
        self.reinit_particle()

    def setup_table_view(self):
        # setup table view
        self.tableView_model = QStandardItemModel(40, 3)
        self.tableView_model.clear()
        self.tableView_model.setHorizontalHeaderItem(0, QStandardItem('Name'))
        self.tableView_model.setHorizontalHeaderItem(1, QStandardItem('Value'))
        self.tableView_model.setHorizontalHeaderItem(2, QStandardItem('Unit'))
        # self.tableView.verticalHeader().setVisible(False)
        self.tableView.setModel(self.tableView_model)

    def connect_signals(self):
        """
        Connects signals.
        :return:
        """
        self.actionClear_results.triggered.connect(self.on_pushButton_clear)
        self.actionSave_results.triggered.connect(self.save_file_dialog)
        self.actionCalculate.triggered.connect(self.on_pushButton_calculate)
        self.actionShow_table_data.triggered.connect(self.on_pushButton_table_data)
        self.actionIdentify.triggered.connect(self.on_pushButton_identify)
        self.actionIsotopes.triggered.connect(self.show_isotopes)
        self.actionIsobars.triggered.connect(self.show_isobars)
        self.actionIsotones.triggered.connect(self.show_isotones)

        # Action about and Action quit will be shown differently in OSX
        self.actionAbout.triggered.connect(self.show_about_dialog)
        self.actionQuit.triggered.connect(QCoreApplication.instance().quit)

        self.pushButton_copy_table.clicked.connect(self.on_pushButton_copy_table)
        self.pushButton_clear.clicked.connect(self.on_pushButton_clear)
        self.pushButton_isotopes.clicked.connect(self.show_isotopes)
        self.pushButton_isotones.clicked.connect(self.show_isotones)
        self.pushButton_isobars.clicked.connect(self.show_isobars)
        self.pushButton_save.clicked.connect(self.save_file_dialog)
        self.pushButton_calculate.clicked.connect(self.on_pushButton_calculate)
        self.pushButton_table_data.clicked.connect(self.on_pushButton_table_data)
        self.pushButton_identify.clicked.connect(self.on_pushButton_identify)

        self.pushButton_nav_n.clicked.connect(self.on_nav_n_pressed)
        self.pushButton_nav_ne.clicked.connect(self.on_nav_ne_pressed)
        self.pushButton_nav_e.clicked.connect(self.on_nav_e_pressed)
        self.pushButton_nav_se.clicked.connect(self.on_nav_se_pressed)
        self.pushButton_nav_s.clicked.connect(self.on_nav_s_pressed)
        self.pushButton_nav_sw.clicked.connect(self.on_nav_sw_pressed)
        self.pushButton_nav_w.clicked.connect(self.on_nav_w_pressed)
        self.pushButton_nav_nw.clicked.connect(self.on_nav_nw_pressed)

        self.spinBox_qq.valueChanged.connect(self.on_spinBox_qq_changed)
        self.spinBox_nn.valueChanged.connect(self.on_spinBox_nn_changed)
        self.spinBox_zz.valueChanged.connect(self.on_spinBox_zz_changed)

        self.comboBox_name.currentIndexChanged.connect(self.on_comboBox_name_changed)
        self.comboBox_ring.currentIndexChanged.connect(self.on_comboBox_ring_changed)

    def show_about_dialog(self):
        about_dialog = QDialog()
        about_dialog.ui = Ui_AbooutDialog()
        about_dialog.ui.setupUi(about_dialog)
        about_dialog.ui.label_version.setText('Version: {}'.format(__version__))
        about_dialog.exec_()
        about_dialog.show()

    def show_message(self, message):
        """
        Implementation of an abstract method:
        Show text in status bar
        :param message:
        :return:
        """
        self.statusbar.showMessage(message)

    def show_message_box(self, text):
        """
        Implementation of an abstract method:
        Display a message box.
        :param text:
        :return:
        """
        reply = QMessageBox.question(self, 'Message',
                                     text, QMessageBox.Yes |
                                     QMessageBox.No, QMessageBox.No)

        if reply == QMessageBox.Yes:
            return True
        else:
            return False

    def show_isotopes(self):
        """
        SLOT
        show isotopes
        :return:
        """
        self.reinit_particle()
        p_array = self.particle.get_isotopes()
        text = 'Isotopes of {} are:\n'.format(self.particle) + '\n'.join(map(str, p_array)) + '\n'
        self.plainTextEdit.appendPlainText(text)

    def show_isotones(self):
        """
        SLOT
        show isotones
        :return:
        """
        self.reinit_particle()
        text = 'Isotones of {} are:\n'.format(self.particle) + '\n'.join(map(str, self.particle.get_isotones())) + '\n'
        self.plainTextEdit.appendPlainText(text)

    def show_isobars(self):
        """
        SLOT
        show isobars
        :return:
        """
        self.reinit_particle()
        text = 'Isobars of {} are:\n'.format(self.particle) + '\n'.join(map(str, self.particle.get_isobars())) + '\n'
        self.plainTextEdit.appendPlainText(text)

    def save_file_dialog(self):
        """
        Show a save file dialog
        :return:
        """
        file_name, _ = QFileDialog.getSaveFileName(self, "Save results", '',
                                                   "Text file (*.txt)")
        if not file_name:
            return
        self.save_results(file_name)

    def save_results(self, file_name):
        """
        Save results to fiven filename.
        :param file_name:
        :return:
        """
        if not self.plainTextEdit.toPlainText():
            self.show_message('No results to save.')
            return

        with open(file_name, 'w') as f:
            f.write(str(self.plainTextEdit.toPlainText()))
            self.show_message('Wrote to file {}.'.format(file_name))

    def check_nuclide_validity(self):
        """
        Check if the given nuclide exists in the table
        :return:
        """
        nuclide_validity = True
        if '{}_{}'.format(self.spinBox_zz.value(), self.spinBox_nn.value()) in self.ame_data.zz_nn_names_dic:
            aa = self.spinBox_zz.value() + self.spinBox_nn.value()
            self.label_name.setText(
                '{} {} {}+'.format(aa, self.ame_data.zz_nn_names_dic[
                    '{}_{}'.format(self.spinBox_zz.value(), self.spinBox_nn.value())], self.spinBox_qq.value()))
            self.show_message('Valid nuclide')
        else:
            self.label_name.setText('------')
            self.show_message('Not a valid nuclide')
            nuclide_validity = False
        return nuclide_validity

    def reinit_particle(self):
        """
        Re initialize the particle with new values
        :return:
        """
        if self.check_nuclide_validity():
            # Here make a particle
            zz = self.spinBox_zz.value()
            nn = self.spinBox_nn.value()
            self.particle = Particle(zz, nn, self.ame_data, self.ring_dict[self.current_ring_name])
            self.particle.qq = self.spinBox_qq.value()
            self.particle.ke_u = self.doubleSpinBox_energy.value()
            self.particle.i_beam_uA = self.doubleSpinBox_beam_current.value()
            self.particle.f_analysis_mhz = self.doubleSpinBox_f_analysis.value()
            if not self.checkBox_circum.isChecked():
                self.particle.path_length_m = self.doubleSpinBox_path_length.value()
            else:
                self.particle.path_length_m = self.ring_dict[self.current_ring_name].circumference

    def keyPressEvent(self, event):
        """
        Keypress event handler
        :return:
        """
        if type(event) == QKeyEvent:
            # here accept the event and do something
            if event.key() == Qt.Key_Return or event.key() == Qt.Key_Enter:  # code enter key
                # self.do_calculate()
                self.on_pushButton_calculate()
                event.accept()
            if event.key() == Qt.Key_Space:
                # self.on_pushButton_table_data()
                event.accept()
            if event.key() == Qt.Key_Up:
                print('up')
                event.accept()
        else:
            event.ignore()

    def on_spinBox_zz_changed(self):
        """
        SLOT
        :return:
        """
        self.spinBox_zz.setMinimum(1)
        self.spinBox_zz.setMaximum(self.ame_data.zz_max)
        self.comboBox_name.setCurrentIndex(self.spinBox_zz.value())
        if self.spinBox_qq.value() > self.spinBox_zz.value():
            self.spinBox_qq.setValue(self.spinBox_zz.value())
        self.check_nuclide_validity()

    def on_spinBox_nn_changed(self):
        """
        SLOT
        :return:
        """
        self.spinBox_nn.setMinimum(0)
        self.spinBox_nn.setMaximum(self.ame_data.nn_max)
        self.check_nuclide_validity()

    def on_spinBox_qq_changed(self):
        """
        SLOT
        :return:
        """
        self.spinBox_qq.setMinimum(1)
        self.spinBox_qq.setMaximum(self.ame_data.zz_max)
        if self.spinBox_qq.value() > self.spinBox_zz.value():
            self.spinBox_qq.setValue(self.spinBox_zz.value())
        self.check_nuclide_validity()

    def on_comboBox_name_changed(self, idx):
        """
        SLOT
        :return:
        """
        self.spinBox_zz.setValue(idx)
        self.spinBox_nn.setValue(idx)
        self.spinBox_qq.setValue(idx)

    def on_comboBox_ring_changed(self, idx):
        # ignore index for now
        self.current_ring_name = self.comboBox_ring.itemText(idx)

    def on_pushButton_calculate(self):
        """
        SLOT
        :return:
        """
        self.do_calculate()

    def on_pushButton_clear(self):
        self.plainTextEdit.clear()
        self.setup_table_view()

    def do_calculate(self):
        """
        SLOT
        Do the actual calculation
        :return:
        """
        if self.check_nuclide_validity():
            self.show_message('Valid nuclide.')
            self.reinit_particle()
            self.update_table_view()
        else:
            self.show_message('Not a valid nuclide.')

    def on_pushButton_copy_table(self):
        self.plainTextEdit.appendPlainText(self.particle.calculate_from_energy())

    def on_pushButton_table_data(self):
        """
        SLOT
        :return:
        """
        self.reinit_particle()
        self.plainTextEdit.appendPlainText(self.particle.get_table_data())

    def on_pushButton_identify(self):
        # update rings etc...
        self.reinit_particle()
        try:
            f_actual = float(self.lineEdit_f_actual.text())
            f_unknown = float(self.lineEdit_f_unknown.text())
        except(ValueError):
            self.show_message('Please enter valid frequencies in the text field.')
            return

        range_zz = self.spinBox_range_zz.value()
        range_nn = self.spinBox_range_nn.value()
        max_ee = self.spinBox_max_ee.value()
        accuracy = self.doubleSpinBox_accuracy.value()
        self.plainTextEdit.appendPlainText(
            self.particle.identify(float(f_actual), float(f_unknown), range_zz, range_nn, max_ee, accuracy))

        self.show_message('You may narrow your search either by reducing search area or the sensitivity radius.')

    def on_nav_n_pressed(self):
        """
        SLOT
        :return:
        """
        zz = self.spinBox_zz.value()
        self.spinBox_zz.setValue(zz + 1)

    def on_nav_ne_pressed(self):
        """
        SLOT
        :return:
        """
        zz = self.spinBox_zz.value()
        nn = self.spinBox_nn.value()
        self.spinBox_zz.setValue(zz + 1)
        self.spinBox_nn.setValue(nn + 1)

    def on_nav_e_pressed(self):
        """
        SLOT
        :return:
        """
        nn = self.spinBox_nn.value()
        self.spinBox_nn.setValue(nn + 1)

    def on_nav_se_pressed(self):
        """
        SLOT
        :return:
        """
        zz = self.spinBox_zz.value()
        nn = self.spinBox_nn.value()
        self.spinBox_zz.setValue(zz - 1)
        self.spinBox_nn.setValue(nn + 1)

    def on_nav_s_pressed(self):
        """
        SLOT
        :return:
        """
        zz = self.spinBox_zz.value()
        self.spinBox_zz.setValue(zz - 1)

    def on_nav_sw_pressed(self):
        """
        SLOT
        :return:
        """
        zz = self.spinBox_zz.value()
        nn = self.spinBox_nn.value()
        self.spinBox_zz.setValue(zz - 1)
        self.spinBox_nn.setValue(nn - 1)

    def on_nav_w_pressed(self):
        """
        SLOT
        :return:
        """
        nn = self.spinBox_nn.value()
        self.spinBox_nn.setValue(nn - 1)

    def on_nav_nw_pressed(self):
        """
        SLOT
        :return:
        """
        zz = self.spinBox_zz.value()
        nn = self.spinBox_nn.value()
        self.spinBox_zz.setValue(zz + 1)
        self.spinBox_nn.setValue(nn - 1)

    def update_table_view(self):
        lst = self.particle.calculate_from_energy_list()
        for i in range(len(lst)):
            for j in range(len(lst[0])):
                item = QStandardItem(lst[i][j])
                self.tableView_model.setItem(i, j, item)
        self.tableView.resizeColumnsToContents()
 def generate_new_particle_set(self):
     '''Discards the current particle set and creates a new set of random particles.
     '''
     self.particles = list()
     for i in xrange(self.filter_params.number_of_particles):
         self.particles.append(Particle.random_particle(self.filter_params.neg_x_limit, self.filter_params.x_limit, self.filter_params.neg_y_limit, self.filter_params.y_limit, 1./self.filter_params.number_of_particles))
        threading.Thread.__init__(self, daemon=True)
        self.filter = particle_filter
        self.gui = gui

    def run(self):
        while True:
            estimated = self.filter.update()
            self.gui.show_particles(self.filter.particles)
            self.gui.show_mean(estimated[0], estimated[1], estimated[2],
                               estimated[3])
            self.gui.show_robot(self.filter.robbie)
            self.gui.updated.set()


if __name__ == "__main__":
    grid = CozGrid(Map_filename)

    # initial distribution assigns each particle an equal probability
    particles = Particle.create_random(setting.PARTICLE_COUNT, grid)
    robbie = Robot(Robot_init_pose[0], Robot_init_pose[1], Robot_init_pose[2])
    particlefilter = ParticleFilter(particles, robbie, grid)

    if Use_GUI:
        gui = GUIWindow(grid)
        filter_thread = ParticleFilterThread(particlefilter, gui)
        filter_thread.start()
        gui.start()
    else:
        while True:
            particlefilter.update()
示例#52
0
def run_test_case(Robot_init_pose, Dh_circular, Robot_speed):
    grid = CozGrid(Map_filename)

    # initial distribution assigns each particle an equal probability
    particles = Particle.create_random(setting.PARTICLE_COUNT, grid)
    robbie = Robot(Robot_init_pose[0], Robot_init_pose[1], Robot_init_pose[2])
    particlefilter = ParticleFilter(particles, robbie, grid)

    score = 0

    # 1. steps to build tracking
    steps_built_track = 9999
    for i in range(0, Steps_build_tracking):

        est_pose = particlefilter.update()

        if grid_distance(est_pose[0], est_pose[1], robbie.x, robbie.y) < Err_trans \
                and math.fabs(diff_heading_deg(est_pose[2], robbie.h)) < Err_rot \
                and i+1 < steps_built_track:
            steps_built_track = i + 1

    #print("steps_built_track =", steps_built_track)
    if steps_built_track < 50:
        score = 45
    elif steps_built_track < Steps_build_tracking:
        score = Steps_build_tracking - steps_built_track
    else:
        score = 0

    print("\nPhase 1")
    print("Number of steps to build track :", steps_built_track, "/",
          Steps_build_tracking)
    acc_err_trans, acc_err_rot = 0.0, 0.0
    max_err_trans, max_err_rot = 0.0, 0.0
    step_track = 0

    # 2. test tracking
    score_per_track = 45.0 / Steps_stable_tracking

    for i in range(0, Steps_stable_tracking):

        est_pose = particlefilter.update()

        err_trans = grid_distance(est_pose[0], est_pose[1], robbie.x, robbie.y)
        acc_err_trans += err_trans
        if max_err_trans < err_trans:
            max_err_trans = err_trans

        err_rot = math.fabs(diff_heading_deg(est_pose[2], robbie.h))
        acc_err_rot += err_rot
        if max_err_rot < err_rot:
            max_err_rot = err_rot

        if grid_distance(est_pose[0], est_pose[1], robbie.x, robbie.y) < Err_trans \
                and math.fabs(diff_heading_deg(est_pose[2], robbie.h)) < Err_rot:
            step_track += 1
            score += score_per_track

    print("\nPhase 2")
    print("Number of steps error in threshold :", step_track, "/",
          Steps_stable_tracking)
    print("Average translational error :",
          acc_err_trans / Steps_stable_tracking)
    print("Average rotational error :", acc_err_rot / Steps_stable_tracking,
          "deg")
    print("Max translational error :", max_err_trans)
    print("Max rotational error :", max_err_rot, "deg")

    return score
示例#53
0
class FastSlam(object):
    """Main class that implements the FastSLAM1.0 algorithm"""
    def __init__(self, x, y, orien, particle_size=50):
        self.world = World()
        self.particles = [
            Particle(x, y,
                     random.random() * 2. * math.pi)
            for i in xrange(particle_size)
        ]
        self.robot = Particle(x, y, orien, is_robot=True)
        self.particle_size = particle_size

    def run_simulation(self):
        while True:
            for event in self.world.pygame.event.get():
                self.world.test_end(event)
            self.world.clear()
            key_pressed = self.world.pygame.key.get_pressed()
            if self.world.move_forward(key_pressed):
                self.move_forward(2)
                obs = self.robot.sense(self.world.landmarks, 2)
                for p in self.particles:
                    p.update(obs)
                self.particles = self.resample_particles()
            if self.world.turn_left(key_pressed):
                self.turn_left(5)
            if self.world.turn_right(key_pressed):
                self.turn_right(5)
            self.world.render(self.robot, self.particles,
                              self.get_predicted_landmarks())

    def move_forward(self, step):
        self.robot.forward(step)
        for p in self.particles:
            p.forward(step)

    def turn_left(self, angle):
        self.robot.turn_left(angle)
        for p in self.particles:
            p.turn_left(angle)

    def turn_right(self, angle):
        self.robot.turn_right(angle)
        for p in self.particles:
            p.turn_right(angle)

    def resample_particles(self):
        new_particles = []
        weight = [p.weight for p in self.particles]
        index = int(random.random() * self.particle_size)
        beta = 0.0
        mw = max(weight)
        for i in xrange(self.particle_size):
            beta += random.random() * 2.0 * mw
            while beta > weight[index]:
                beta -= weight[index]
                index = (index + 1) % self.particle_size
            new_particle = deepcopy(self.particles[index])
            new_particle.weight = 1
            new_particles.append(new_particle)
        return new_particles

    def get_predicted_landmarks(self):
        return self.particles[0].landmarks
示例#54
0
 def safe_name(name):
     try:
         return Particle.from_string(name).html_name
     except:
         return name
示例#55
0
    def __init__(self, data, args, debug=False):
        # [n, pi-, pi-, pi+, an, pi+, pi+, pi-]
        p = [Particle(data[:, 5 * i:5 * i + 4]) for i in range(8)]
        cols = []

        def get_tau1(p):
            p_tau1_nu = p[0]
            l_tau1_pi = p[1:4]  # pi-, pi-, pi+
            p_tau1_a1 = sum(l_tau1_pi)
            p_tau1 = p_tau1_nu + p_tau1_a1

            l_tau1_rho = [None] * 2
            l_tau1_rho[0] = l_tau1_pi[0] + l_tau1_pi[2]  # pi1- + pi+
            l_tau1_rho[1] = l_tau1_pi[1] + l_tau1_pi[2]  # pi2- + pi+

            return p_tau1_nu, p_tau1_a1, l_tau1_pi, l_tau1_rho, p_tau1

        def get_tau2(p):
            p_tau2_nu = p[4]
            l_tau2_pi = p[5:8]
            p_tau2_a1 = sum(l_tau2_pi)
            p_tau2 = p_tau2_nu + p_tau2_a1

            l_tau2_rho = [None] * 2
            l_tau2_rho[0] = l_tau2_pi[0] + l_tau2_pi[2]  # pi1+ + pi-
            l_tau2_rho[1] = l_tau2_pi[1] + l_tau2_pi[2]  # pi2+ + pi-

            return p_tau2_nu, p_tau2_a1, l_tau2_pi, l_tau2_rho, p_tau2

        p_tau1_nu, p_tau1_a1, l_tau1_pi, l_tau1_rho, p_tau1 = get_tau1(p)
        p_tau1_rho = sum(l_tau1_pi)

        p_tau2_nu, p_tau2_a1, l_tau2_pi, l_tau2_rho, p_tau2 = get_tau2(p)
        p_tau2_rho = sum(l_tau2_pi)

        p_a1_a1 = sum(l_tau1_pi + l_tau2_pi)

        PHI, THETA = calc_angles(p_tau1_a1, p_a1_a1)
        beta_noise = args.BETA

        for i, idx in enumerate([0, 1, 2, 3, 4, 5, 6, 7]):
            part = boost_and_rotate(p[idx], PHI, THETA, p_a1_a1)
            if args.FEAT in [
                    "Variant-1.0", "Variant-1.1", "Variant-2.0", "Variant-2.1",
                    "Variant-2.2", "Variant-3.0", "Variant-3.1", "Variant-3.2",
                    "Variant-4.0", "Variant-4.1"
            ]:
                if idx not in [0, 4]:
                    cols.append(part.vec)
            if args.FEAT == "Variant-All":
                cols.append(part.vec)

        if args.FEAT == "Variant-4.0":
            part = boost_and_rotate(p_tau1, PHI, THETA, p_a1_a1)
            cols.append(part.vec)
            part = boost_and_rotate(p_tau2, PHI, THETA, p_a1_a1)
            cols.append(part.vec)

        if args.FEAT == "Variant-4.1":
            p_tau1_approx = scale_lifetime(p_tau1)
            part = boost_and_rotate(p_tau1_approx, PHI, THETA, p_a1_a1)
            cols.append(part.vec)
            p_tau2_approx = scale_lifetime(p_tau2)
            part = boost_and_rotate(p_tau2_approx, PHI, THETA, p_a1_a1)
            cols.append(part.vec)

        # rho particles
        if args.FEAT == "Variant-1.1":
            for i, rho in enumerate(l_tau1_rho + l_tau2_rho):
                rho = boost_and_rotate(rho, PHI, THETA, p_a1_a1)
                cols.append(rho.vec)

        # recalculated masses
        if args.FEAT == "Variant-1.1":
            for i, part in enumerate(l_tau1_rho + l_tau2_rho +
                                     [p_tau1_a1, p_tau2_a1]):
                part = boost_and_rotate(part, PHI, THETA, p_a1_a1)
                cols.append(part.recalculated_mass)

        if args.FEAT == "Variant-1.1":
            for i in [1, 2]:
                for ii in [5, 6]:
                    rho = p[i] + p[3]
                    other_pi = p[2 if i == 1 else 1]
                    rho2 = p[ii] + p[7]
                    other_pi2 = p[6 if i == 5 else 5]
                    rho_rho = rho + rho2
                    a1_rho = p_tau1_a1 + rho2
                    rho_a1 = rho + p_tau2_a1

                    cols += [
                        get_acoplanar_angle(p[i], p[3], p[ii], p[7], rho_rho),
                        get_acoplanar_angle(rho, other_pi, p[ii], p[7],
                                            a1_rho),
                        get_acoplanar_angle(p[i], p[3], rho2, other_pi2,
                                            rho_a1),
                        get_acoplanar_angle(rho, other_pi, rho2, other_pi2,
                                            p_a1_a1)
                    ]

                    cols += [
                        get_y(p[i], p[3], rho_rho),
                        get_y(p[ii], p[7], rho_rho),
                        get_y2(p_tau1_a1, rho, other_pi, a1_rho),
                        get_y(p[ii], p[7], a1_rho),
                        get_y(p[i], p[3], rho_a1),
                        get_y2(p_tau2_a1, rho2, other_pi2, rho_a1),
                        get_y2(p_tau1_a1, rho, other_pi, p_a1_a1),
                        get_y2(p_tau2_a1, rho2, other_pi2, p_a1_a1)
                    ]

        #------------------------------------------------------------

        pb_tau1_h = boost_and_rotate(p_tau1_rho, PHI, THETA, p_a1_a1)
        pb_tau2_h = boost_and_rotate(p_tau2_rho, PHI, THETA, p_a1_a1)
        pb_tau1_nu = boost_and_rotate(p_tau1_nu, PHI, THETA, p_a1_a1)
        pb_tau2_nu = boost_and_rotate(p_tau2_nu, PHI, THETA, p_a1_a1)

        #------------------------------------------------------------

        v_ETmiss_x = p_tau1_nu.x + p_tau2_nu.x
        v_ETmiss_y = p_tau1_nu.y + p_tau2_nu.y
        if args.FEAT == "Variant-2.2":
            cols += [v_ETmiss_x, v_ETmiss_y]

        vr_ETmiss_x, vr_ETmiss_y = rotate_xy(v_ETmiss_x, v_ETmiss_y, PHI)

        #------------------------------------------------------------

        if args.METHOD == "A":
            va_alpha1, va_alpha2 = approx_alpha_A(v_ETmiss_x, v_ETmiss_y,
                                                  p_tau1_rho, p_tau2_rho)
        elif args.METHOD == "B":
            va_alpha1, va_alpha2 = approx_alpha_B(v_ETmiss_x, v_ETmiss_y,
                                                  p_tau1_rho, p_tau2_rho)
        elif args.METHOD == "C":
            va_alpha1, va_alpha2 = approx_alpha_C(v_ETmiss_x, v_ETmiss_y,
                                                  p_tau1_rho, p_tau2_rho)

        #------------------------------------------------------------

        va_tau1_nu_long = va_alpha1 * pb_tau1_h.z
        va_tau2_nu_long = va_alpha2 * pb_tau2_h.z

        #------------------------------------------------------------

        va_tau1_nu_E = approx_E_nu(pb_tau1_h, va_tau1_nu_long)
        va_tau2_nu_E = approx_E_nu(pb_tau2_h, va_tau2_nu_long)

        # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

        va_tau1_nu_trans = np.sqrt(
            np.square(va_tau1_nu_E) - np.square(va_tau1_nu_long))
        va_tau2_nu_trans = np.sqrt(
            np.square(va_tau2_nu_E) - np.square(va_tau2_nu_long))

        lambda_noise = args.BETA
        v_tau1_nu_phi = np.arctan2(pb_tau1_nu.x, pb_tau1_nu.y)  #boosted
        v_tau2_nu_phi = np.arctan2(pb_tau2_nu.x, pb_tau2_nu.y)
        vn_tau1_nu_phi = smear_exp(v_tau1_nu_phi, beta_noise)
        vn_tau2_nu_phi = smear_exp(v_tau2_nu_phi, beta_noise)

        if args.FEAT in ["Variant-3.2"]:
            vn_tau1_nu_phi = smear_expnorm(v_tau1_nu_phi, args.BETA,
                                           args.smear_loc, args.smear_scale)
            vn_tau2_nu_phi = smear_expnorm(v_tau2_nu_phi, args.BETA,
                                           args.smear_loc, args.smear_scale)

        tau1_sin_phi = np.sin(vn_tau1_nu_phi)
        tau1_cos_phi = np.cos(vn_tau1_nu_phi)
        tau2_sin_phi = np.sin(vn_tau2_nu_phi)
        tau2_cos_phi = np.cos(vn_tau2_nu_phi)

        ve_x1_cms = pb_tau1_h.z / (pb_tau1_h + pb_tau1_nu).z
        ve_x2_cms = pb_tau2_h.z / (pb_tau2_h + pb_tau2_nu).z

        ve_alpha1_cms = 1 / ve_x1_cms - 1
        ve_alpha2_cms = 1 / ve_x2_cms - 1

        ve_tau1_nu_long = ve_alpha1_cms * pb_tau1_h.z
        ve_tau2_nu_long = ve_alpha2_cms * pb_tau2_h.z

        ve_tau1_nu_E = approx_E_nu(pb_tau1_h, ve_tau1_nu_long)
        ve_tau2_nu_E = approx_E_nu(pb_tau2_h, ve_tau2_nu_long)

        ve_tau1_nu_trans = np.sqrt(
            np.square(ve_tau1_nu_E) - np.square(ve_tau1_nu_long))
        ve_tau2_nu_trans = np.sqrt(
            np.square(ve_tau2_nu_E) - np.square(ve_tau2_nu_long))

        if args.FEAT in ["Variant-2.1", "Variant-2.2"]:
            cols += [
                va_tau1_nu_long, va_tau2_nu_long, va_tau1_nu_E, va_tau2_nu_E,
                va_tau1_nu_trans, va_tau2_nu_trans
            ]
        elif args.FEAT in ["Variant-3.0", "Variant-3.1", "Variant-3.2"]:
            cols += [
                va_tau1_nu_long, va_tau2_nu_long, va_tau1_nu_E, va_tau2_nu_E,
                va_tau1_nu_trans * tau1_sin_phi,
                va_tau2_nu_trans * tau2_sin_phi,
                va_tau1_nu_trans * tau1_cos_phi,
                va_tau2_nu_trans * tau2_cos_phi
            ]
        elif args.FEAT == "Variant-2.0":
            cols += [
                ve_tau1_nu_long, ve_tau2_nu_long, ve_tau1_nu_E, ve_tau2_nu_E,
                ve_tau1_nu_trans, ve_tau2_nu_trans
            ]

        print(ve_tau1_nu_long)
        # filter
        filt = (p_tau1_a1.pt >= 20) & (p_tau2_a1.pt >= 20)
        for part in (l_tau1_pi + l_tau2_pi):
            filt = filt & (part.pt >= 1)
        #filt = filt.astype(np.float32)

        if args.FEAT in [
                "Variant-1.0", "Variant-1.1", "Variant-All", "Variant-4.0",
                "Variant-4.1"
        ]:
            cols += [filt]

        elif args.FEAT in [
                "Variant-2.1", "Variant-2.2", "Variant-3.0", "Variant-3.1",
                "Variant-3.2"
        ]:
            isFilter = np.full(p_tau1_a1.e.shape, True, dtype=bool)

            va_alpha1_A, va_alpha2_A = approx_alpha_A(v_ETmiss_x, v_ETmiss_y,
                                                      p_tau1_rho, p_tau2_rho)
            va_alpha1_B, va_alpha2_B = approx_alpha_B(v_ETmiss_x, v_ETmiss_y,
                                                      p_tau1_rho, p_tau2_rho)
            va_alpha1_C, va_alpha2_C = approx_alpha_C(v_ETmiss_x, v_ETmiss_y,
                                                      p_tau1_rho, p_tau2_rho)

            va_tau1_nu_long_A = va_alpha1_A * pb_tau1_h.z
            va_tau1_nu_long_B = va_alpha1_B * pb_tau1_h.z
            va_tau1_nu_long_C = va_alpha1_C * pb_tau1_h.z

            va_tau2_nu_long_A = va_alpha2_A * pb_tau2_h.z
            va_tau2_nu_long_B = va_alpha2_B * pb_tau2_h.z
            va_tau2_nu_long_C = va_alpha2_C * pb_tau2_h.z

            va_tau1_nu_E_A = approx_E_nu(pb_tau1_h, va_tau1_nu_long_A)
            va_tau1_nu_E_B = approx_E_nu(pb_tau1_h, va_tau1_nu_long_B)
            va_tau1_nu_E_C = approx_E_nu(pb_tau1_h, va_tau1_nu_long_C)

            va_tau2_nu_E_A = approx_E_nu(pb_tau2_h, va_tau2_nu_long_A)
            va_tau2_nu_E_B = approx_E_nu(pb_tau2_h, va_tau2_nu_long_B)
            va_tau2_nu_E_C = approx_E_nu(pb_tau2_h, va_tau2_nu_long_C)

            va_tau1_nu_trans_A = np.sqrt(
                np.square(va_tau1_nu_E_A) - np.square(va_tau1_nu_long_A))
            va_tau1_nu_trans_B = np.sqrt(
                np.square(va_tau1_nu_E_B) - np.square(va_tau1_nu_long_B))
            va_tau1_nu_trans_C = np.sqrt(
                np.square(va_tau1_nu_E_C) - np.square(va_tau1_nu_long_C))

            va_tau2_nu_trans_A = np.sqrt(
                np.square(va_tau2_nu_E_A) - np.square(va_tau2_nu_long_A))
            va_tau2_nu_trans_B = np.sqrt(
                np.square(va_tau2_nu_E_B) - np.square(va_tau2_nu_long_B))
            va_tau2_nu_trans_C = np.sqrt(
                np.square(va_tau2_nu_E_C) - np.square(va_tau2_nu_long_C))

            for alpha in [
                    va_alpha1_A, va_alpha1_B, va_alpha1_C, va_alpha2_A,
                    va_alpha2_B, va_alpha2_C
            ]:
                isFilter *= (alpha > 0)
            for energy in [
                    va_tau1_nu_E_A, va_tau1_nu_E_B, va_tau1_nu_E_C,
                    va_tau2_nu_E_A, va_tau2_nu_E_B, va_tau2_nu_E_C
            ]:
                isFilter *= (energy > 0)
            for trans_comp in [
                    va_tau1_nu_trans_A, va_tau1_nu_trans_B, va_tau1_nu_trans_C,
                    va_tau2_nu_trans_A, va_tau2_nu_trans_B, va_tau2_nu_trans_C
            ]:
                isFilter *= np.logical_not(np.isnan(trans_comp))
            cols += [filt * isFilter]

        elif args.FEAT in ["Variant-2.0"]:
            isFilter = np.full(p_tau1_a1.e.shape, True, dtype=bool)
            for alpha in [ve_alpha1_cms, ve_alpha2_cms]:
                isFilter *= (alpha > 0)
            for energy in [ve_tau1_nu_E, ve_tau2_nu_E]:
                isFilter *= (energy > 0)
            for trans_comp in [ve_tau1_nu_trans, ve_tau2_nu_trans]:
                isFilter *= np.logical_not(np.isnan(trans_comp))
            cols += [filt * isFilter]

        for i in range(len(cols)):
            if len(cols[i].shape) == 1:
                cols[i] = cols[i].reshape([-1, 1])

        self.cols = np.concatenate(cols, 1)
        if args.BETA > 0:

            vn_tau1_nu_phi = smear_polynomial(v_tau1_nu_phi, args.BETA,
                                              args.pol_b, args.pol_c)
            vn_tau2_nu_phi = smear_polynomial(v_tau2_nu_phi, args.BETA,
                                              args.pol_b, args.pol_c)

            tau1_sin_phi = np.sin(vn_tau1_nu_phi)
            tau1_cos_phi = np.cos(vn_tau1_nu_phi)
            tau2_sin_phi = np.sin(vn_tau2_nu_phi)
            tau2_cos_phi = np.cos(vn_tau2_nu_phi)

        self.valid_cols = [
            va_tau1_nu_trans * tau1_sin_phi, va_tau2_nu_trans * tau2_sin_phi,
            va_tau1_nu_trans * tau1_cos_phi, va_tau2_nu_trans * tau2_cos_phi
        ]
示例#56
0
def measurement_update(particles, measured_marker_list, grid):
    """ Particle filter measurement update

        Arguments:
        particles -- input list of particle represents belief \tilde{p}(x_{t} | u_{t})
                before meansurement update
        measured_marker_list -- robot detected marker list, each marker has format:
                measured_marker_list[i] = (rx, ry, rh)
                rx -- marker's relative X coordinate in robot's frame
                ry -- marker's relative Y coordinate in robot's frame
                rh -- marker's relative heading in robot's frame, in degree
        grid -- grid world map, which contains the marker information,
                see grid.h and CozGrid for definition

        Returns: the list of particle represents belief p(x_{t} | u_{t})
                after measurement update
    """
    measured_particles = []
    counter = 0
    weightArr = []

    if len(measured_marker_list) != 0:
        for particle in particles:
            # Obtain list of localization markers
            visibleMarkers = particle.read_markers(grid)

            shouldAppendParticle = particle.x >= grid.width or particle.x < 0 or particle.y >= grid.height or particle.y < 0 or (
                particle.x, particle.y) in grid.occupied
            if shouldAppendParticle:
                weightArr.append((particle, 0))
            else:
                mmlLength = len(measured_marker_list)
                vmLength = len(visibleMarkers)
                pairs = []
                for measuredMarker in measured_marker_list:
                    if len(visibleMarkers) != 0:
                        # find closest marker
                        nearestMarker = findNearestMarker(
                            measuredMarker, visibleMarkers)
                        # remove from possible future pairings
                        visibleMarkers.remove(nearestMarker)
                        # store pairings
                        pairs.append((nearestMarker, measuredMarker))

                weightArr.append(
                    (particle, getProbability(pairs, mmlLength, vmLength)))

        counter2 = 0
        remove = int(PARTICLE_COUNT / 100)

        # update weights
        weightArr.sort(key=lambda x: x[1])
        weightArr = weightArr[remove:]
        for i, j in weightArr:
            if j != 0:
                counter2 = counter2 + j
            if j == 0:
                counter = counter + 1
        weightArr = weightArr[counter:]
        counter = counter + remove
    else:
        counter2 = 1
        for p in particles:
            weightArr.append((p, 1 / len(particles)))

    particleList = []
    weightList = []
    for i, j in weightArr:
        weight = j / counter2
        weightList.append(weight)
        particleList.append(Particle(i.x, i.y, i.h))

    # Create new particle list by random
    newParticleList = []
    if particleList != []:
        newParticleList = numpy.random.choice(particleList,
                                              size=len(particleList),
                                              replace=True,
                                              p=weightList)

    measured_particles = getMeasuredParticles(
        Particle.create_random(counter, grid)[:], newParticleList)

    return measured_particles
示例#57
0
文件: exam.py 项目: CasperBHansen/REX
    WIN_RF1 = "Robot view"
    cv2.namedWindow(WIN_RF1)
    cv2.moveWindow(WIN_RF1, 50, 50)

    WIN_World = "World view"
    cv2.namedWindow(WIN_World)
    cv2.moveWindow(WIN_World, 500, 50)

# Initialize particles
print "Initializing particles .."
num_particles = 1000
particles = []
for i in range(num_particles):
    # Random starting points. (x,y) \in [-1000, 1000]^2, theta \in [-pi, pi].
    p = Particle(2000.0 * np.random.ranf() - 1000,
                 2000.0 * np.random.ranf() - 1000,
                 2.0 * np.pi * np.random.ranf() - np.pi, 1.0 / num_particles)
    particles.append(p)

est_pose = estimate_pose(particles)  # The estimate of the robots current pose

# Driving parameters
velocity = 0.0  # cm/sec
angular_velocity = 0.0  # radians/sec

# Initialize the robot (XXX: You do this)

# Allocate space for world map
world = np.zeros((500, 500, 3), dtype=np.uint8)

# Draw map
示例#58
0
import numpy as np
import pandas as pd
from particle import Particle
from typing import Union

Rho0 = Particle.from_pdgid(113)
Pi0 = Particle.from_pdgid(111)
PiPlus = Particle.from_pdgid(211)
pi_pl_mass = PiPlus.mass / 1000

bckg_y = None


def bw(x: Union[np.ndarray, pd.Series], M: float, G: float,
       amp: float) -> Union[np.ndarray, pd.Series]:
    """
    Breit-Wigner function with params
    M - mass of a resonance
    G - $\Gamma$ of a resonance
    amp - amplitude coefficient
    x - Energy
    """
    q = np.sqrt((x**2) / 4 - pi_pl_mass**2)
    q_rho = np.sqrt((M**2) / 4 - pi_pl_mass**2)
    ratrho1 = ((q / q_rho)**3) / ((q / q_rho)**2 + 1) * 2
    g_tot = G * ratrho1
    fff = amp * G * g_tot * x * M / ((x**2 - M**2)**2 + M**2 * g_tot**2)

    return fff

 def __init__(self, grid):
     self.particles = Particle.create_random(PARTICLE_COUNT, grid)
     self.grid = grid
示例#60
0
def test_particle_update__bad_dvx():
    try:
        p = Particle(1., 2., 2., 2., 2.)
        p.update("lol", 2.0, -1.0)
    except TypeError:
        pass