示例#1
0
def analyze_sequence(method, color_conversion, sigma_thr=3, rho=0.01):
    """  Analyze the video sequence with a given method and color conversion
    """

    # Read GT from dataset
    gtExtractor = annotation_parser.annotationsParser(
        AICITY_DIR.joinpath('m6-full_annotation.xml'))

    bckg_subs = background_substractor(method, sigma_thr=sigma_thr, rho=rho)

    video_name = 'video_' + method + '_' + str(color_conversion) + '.avi'
    # video = cv2.VideoWriter(video_name,
    #                        cv2.VideoWriter_fourcc('M', 'P', '4', 'S'), 20,
    #                        #cv2.VideoWriter_fourcc('H', '2', '6', '4'), 10,
    #                       (1920, 1080))

    detections = []

    # frames =100
    frames = gtExtractor.getGTNFrames()
    for i in range(frames):
        # load the image
        frame_path = AICITY_DIR.joinpath('frames',
                                         'image-{:04d}.png'.format(i + 1))
        image = cv2.imread(str(frame_path))

        if color_conversion != None:
            image = cv2.cvtColor(image, color_conversion)

        image = bckg_subs.apply(image)
        image = process_image(image)

        frame_detections = get_detections(image)

        for detection in frame_detections:
            detections.append([
                i, 0, detection[0], detection[1], detection[2], detection[3], 1
            ])

        image = cv2.cvtColor(image, cv2.COLOR_GRAY2BGR)
        image = add_detections_gt(image, frame_detections, gtExtractor, i)
        # show the output image
        cv2.imshow("Image", image)
        cv2.waitKey(1)
        # video.write(image)

    compute_iou(gtExtractor, detections, 0.5, method, color_conversion, frames)
示例#2
0
 def __init__(self, id, initial_roi: ROI, frame_id):
     self.objectId = id
     self.track = {}
     self.track_corrected = {}
     frame_path = AICITY_DIR.joinpath('frames',
                                      'image-{:04d}.png'.format(frame_id))
     initial_image = cv2.imread(str(frame_path))
     self.OF = OpticalFlowTracker(initial_image, initial_roi)
     self.color = (int(random.random() * 256), int(random.random() * 256),
                   int(random.random() * 256))
     self.first_frame = True
示例#3
0
def process_image(image):
    """  Apply  following operations to backgrouns substracted image to improve moving object detection:
            - Thresholding to remove shadows in some models
            - Morphological opening with a 5x5 circular structuring element to reduce noise
            - Morphological closing with a 10x10 circular structuring element to fill objects
            - Apply roi.jog mask

    Returns:
        Processed image
    """

    ret, image = cv2.threshold(image, 130, 255, cv2.THRESH_BINARY)
    kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (4, 4))
    image = cv2.morphologyEx(image, cv2.MORPH_OPEN, kernel)
    kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (10, 10))
    image = cv2.morphologyEx(image, cv2.MORPH_CLOSE, kernel)

    roi_path = AICITY_DIR.joinpath('roi.jpg')
    roi = cv2.imread(str(roi_path), 0)
    image = cv2.bitwise_and(image, roi)

    return image
示例#4
0
    def add_frame_roi(self, frame_id, roi: ROI):

        if self.first_frame:
            roi.objectId = self.objectId
            r = ROI(roi.xTopLeft, roi.yTopLeft, roi.xBottomRight,
                    roi.yBottomRight, self.objectId)
            self.track[frame_id] = r
            self.track_corrected[frame_id] = r
            self.first_frame = False
        else:
            roi.objectId = self.objectId
            r = ROI(roi.xTopLeft, roi.yTopLeft, roi.xBottomRight,
                    roi.yBottomRight, self.objectId)
            self.track[frame_id] = r
            frame_path = AICITY_DIR.joinpath(
                'frames', 'image-{:04d}.png'.format(frame_id))
            image = cv2.imread(str(frame_path))
            new_center = self.OF.predict(image, self.objectId, frame_id, False)
            self.OF.correct(image, roi)
            raux = roi.reposition(new_center)
            r_c = ROI(raux.xTopLeft, raux.yTopLeft, raux.xBottomRight,
                      raux.yBottomRight, self.objectId)
            self.track_corrected[frame_id] = r_c
示例#5
0
def test_filter_bboxes_out_or_roi():
    """ Shows images and boundig boxes of all samples of a dataset """
    dataset = AICityDataset(AICITY_DIR, AICITY_ANNOTATIONS)
    roi_image = cv2.imread(str(AICITY_DIR.joinpath('roi.jpg')))

    for image, label in dataset:
        # Convert to CV2 image
        image = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)

        bbox = (
            label[2],
            label[3],
            label[4],
            label[5],
        )
        output_image = filter_bbox_out_of_roi(image,
                                              bbox,
                                              roi_image,
                                              threshold=0.5)

        # show the output image
        cv2.imshow("Image", output_image)
        cv2.waitKey(0)
示例#6
0
def test_iou_with_noise():
    # Read GT from dataset
    gtExtractor = detection_gt_extractor.detectionExtractorGT(
        AICITY_DIR.joinpath('gt', 'gt.txt'))

    # parameters to randomize detections
    randomNoiseScale = 100
    additionDeletionProbability = 0.0

    TP = 0
    FN = 0
    FP = 0
    threshold = 0.5

    for i in range(gtExtractor.getGTNFrames()):

        # Get GT BBOX
        gt = []
        for j in range(len(gtExtractor.gt)):
            if gtExtractor.getGTFrame(j) == i:
                gtBBOX = gtExtractor.getGTBoundingBox(j)
                gt.append(gtBBOX)

        # Get detection BBOX
        detections = randomizer.randomize_detections(
            additionDeletionProbability, randomNoiseScale, gt[:])
        BBoxesDetected = []

        for x in range(len(gt)):
            gtBBOX = gt[x]
            detection = []
            maxIoU = 0
            BBoxDetected = -1

            for y in range(len(detections)):
                iou = intersection_over_union.iou_from_bb(
                    gtBBOX, detections[y])
                if iou >= maxIoU:
                    maxIoU = iou
                    detection = detections[y]
                    BBoxDetected = y

            if maxIoU > threshold:
                TP = TP + 1
                BBoxesDetected.append(BBoxDetected)
            else:
                FN = FN + 1

            # load the image
            frame_path = AICITY_DIR.joinpath('frames',
                                             'image-{:04d}.png'.format(i + 1))
            image = cv2.imread(str(frame_path))

            # draw the ground-truth bounding box along with the predicted
            # bounding box
            cv2.rectangle(image, (int(detection[0]), int(detection[1])),
                          (int(detection[2]), int(detection[3])), (0, 0, 255),
                          2)
            cv2.rectangle(image, (int(gtBBOX[0]), int(gtBBOX[1])),
                          (int(gtBBOX[2]), int(gtBBOX[3])), (0, 255, 0), 2)

            # compute the intersection over union and display it

            cv2.putText(image, "IoU: {:.4f}".format(maxIoU), (10, 30),
                        cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 255, 0), 2)
            print("{}: {:.4f}".format(frame_path, maxIoU))

            # show the output image
            cv2.imshow("Image", image)
            cv2.waitKey(0)

        for y in range(len(detections)):
            if not BBoxesDetected.__contains__(y):
                FP = FP + 1
示例#7
0
def compute_mAP(verbose: bool = False, plot: bool = False):
    """ Compute mAP given some detections and a ground truth.

    It only gets the detections where we have ground truth information
    (regardless there is a bounding box on it or not)

    Note:
        Algorithm implemented::

            * For every frame
                * For each confidence level
                    * Compute precision-recall (consider TP when IoU >= 0.5)
                * Interpolate precision using 11 ranks r={0.0, 0.1, ... 1.0}
                * AP = Average for all interpolated precisions
            * mAP = Mean of AP for all frames
    """

    # Parameters
    iou_threshold = 0.5
    recalls = np.linspace(start=0, stop=1.0, num=11).round(decimals=1)

    # Selects detections from available model predictions
    detections_path = AICITY_DIR.joinpath('det', 'det_mask_rcnn.txt')
    # detections_path = AICITY_DIR.joinpath('det', 'det_ssd512.txt')
    # detections_path = AICITY_DIR.joinpath('det', 'det_yolo3.txt')

    detections = detections_loader.load_bounding_boxes(detections_path, False)
    dataset = AICityDataset(AICITY_DIR, AICITY_ANNOTATIONS)
    ground_truth = dataset.get_labels()

    # Select detections only for frames we have ground truth
    mask = np.zeros(detections.shape[0], dtype=np.bool)
    frame_numbers = np.unique(ground_truth[:, 0])
    for frame_number in frame_numbers:
        mask |= detections[:, 0] == frame_number

    detections = detections[mask]

    # Computes AP for every frame
    ap_per_frame = np.empty((0, 2))
    for frame_number in frame_numbers:
        det = detections[detections[:, 0] == frame_number]
        gt = ground_truth[ground_truth[:, 0] == frame_number]

        # For each confidence value
        # Gets precision and recall for a frame considering IoU >= 0.5 TP
        confidences = np.unique(det[:, 5])
        confidences.sort()
        prs = np.empty((0, 2))
        for confidence in confidences:
            # Gets detection/s with higher confidence score than a threshold
            det_with_confidence_level = det[det[:, 5] >= confidence, :]

            det_bboxes = det_with_confidence_level[:, 1:5]
            gt_bboxes = gt[:, 2:6]
            pr = mean_ap.get_precision_recall(det=det_bboxes,
                                              gt=gt_bboxes,
                                              threshold=iou_threshold)
            prs = np.vstack((prs, pr))

        # print(f'Precision/Recall table:\n{prs}')
        # Interpolate p(r) for given r
        precisions_at_specific_recall = mean_ap.interpolate_precision(
            prs, recalls)
        AP = precisions_at_specific_recall.mean()

        if verbose:
            print(f'Frame {frame_number} precision-recall {prs} AP: {AP}')

        if plot:
            # Plot AP and its interpolation
            plt.subplot(211)
            plt.plot(prs[:, 1], prs[:, 0])
            plt.xlabel('Recall')
            plt.ylabel('Precision')
            plt.title('Mean precision as a function of mean recall')
            plt.axis((0, 1.1, 0, 1.1))

            plt.subplot(212)
            plt.plot(recalls, precisions_at_specific_recall)
            plt.xlabel('Recall')
            plt.ylabel('Precision')
            plt.title('Interpolated')
            plt.axis((0, 1.1, 0, 1.1))

            plt.show()

        # [frame_num, AP] column-table
        ap_per_frame = np.vstack((ap_per_frame, (frame_number, AP)))

    mAP = ap_per_frame[:, 1].mean()

    print(f'Detections: {detections_path.stem} --> mAP: {mAP}')
    return mAP
    Detections are formatted as

    ```
    [frame, left, upper, right, lower, score]
    ```

    where frame starts at 0.0 and all elements are float types
    """
    if contains_width_and_height:
        return detections_to_bounding_boxes_width_height(load_detections(path))
    else:
        return detections_to_bounding_boxes(load_detections(path))


if __name__ == '__main__':
    filepath = AICITY_DIR.joinpath('det', 'det_mask_rcnn.txt')
    detections = load_detections(filepath)
    print(detections.shape)
    bb = detections_to_bounding_boxes(detections)
    print(bb.shape)

    # print(detections[0,:])
    # print(bb[0,:])

    filepath = AICITY_DIR.joinpath('det', 'det_ssd512.txt')
    detections = load_detections(filepath)
    print(detections.shape)

    filepath = AICITY_DIR.joinpath('det', 'det_yolo3.txt')
    detections = load_detections(filepath)
    print(detections.shape)
示例#9
0
def iou_vs_time():
    # Read GT from dataset
    gtExtractor = annotation_parser.annotationsParser(
        AICITY_DIR.joinpath('AICITY_team4.xml'))

    # detector = detectionExtractorGT(
    #     AICITY_DIR.joinpath('det', 'det_mask_rcnn.txt'))
    # detector = detectionExtractorGT(
    #     AICITY_DIR.joinpath('det', 'det_ssd512.txt'))
    detector = detection_gt_extractor.detectionExtractorGT(
        AICITY_DIR.joinpath('det', 'det_yolo3.txt'))

    TP = 0
    FN = 0
    FP = 0
    threshold = 0.5

    ROIPath = AICITY_DIR.joinpath('roi.jpg')
    IoUvsFrames = []

    # video = cv2.VideoWriter('video.avi',
    #                         cv2.VideoWriter_fourcc('M', 'J', 'P', 'G'), 10,
    #                         (1920, 1080))
    video = cv2.VideoWriter('video.avi',
                            cv2.VideoWriter_fourcc('M', 'P', '4', '2'), 10,
                            (1920, 1080))

    for i in range(gtExtractor.getGTNFrames()):

        # load the image
        frame_path = AICITY_DIR.joinpath('frames',
                                         'image-{:04d}.png'.format(i + 1))
        image = cv2.imread(str(frame_path))
        IoUvsFrame = []

        # Get GT BBOX

        gt = []
        for j in range(len(gtExtractor.gt)):
            if gtExtractor.getGTFrame(j) == i:
                gtBBOX = gtExtractor.getGTBoundingBox(j)
                gt.append(gtBBOX)

        # gt = refinement.refineBBOX(gt)

        # Get detection BBOX
        detections = []
        for j in range(len(detector.gt)):
            if detector.getGTFrame(j) == i:
                detBBOX = detector.getGTBoundingBox(j)
                detections.append(detBBOX)
        # detections = refinement.refineBBOX(detections)

        BBoxesDetected = []

        for x in range(len(gt)):
            gtBBOX = gt[x]
            detection = []
            maxIoU = 0
            BBoxDetected = -1

            for y in range(len(detections)):

                iou = intersection_over_union.iou_from_bb(
                    gtBBOX, detections[y])
                if iou >= maxIoU:
                    maxIoU = iou
                    detection = detections[y]
                    BBoxDetected = y

            if maxIoU > threshold:
                TP = TP + 1
                BBoxesDetected.append(BBoxDetected)
            else:
                FN = FN + 1

            # draw the ground-truth bounding box along with the predicted
            # bounding box
            if detection != []:
                cv2.rectangle(image, (int(detection[0]), int(detection[1])),
                              (int(detection[2]), int(detection[3])),
                              (0, 0, 255), 2)

            cv2.rectangle(image, (int(gtBBOX[0]), int(gtBBOX[1])),
                          (int(gtBBOX[2]), int(gtBBOX[3])), (0, 255, 0), 2)

            # compute the intersection over union and display it
            IoUvsFrame.append(maxIoU)
            cv2.putText(image, "IoU: {:.4f}".format(maxIoU), (10, 30 + 20 * x),
                        cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 255, 0), 2)
            print("{}: {:.4f}".format(frame_path, maxIoU))

        if not IoUvsFrame:
            IoUvsFrame = [0]

        IoUvsFrames.append(sum(IoUvsFrame) / len(IoUvsFrame))
        for y in range(len(detections)):
            if not BBoxesDetected.__contains__(y):
                FP = FP + 1
                detection = detections[y]
                cv2.rectangle(image, (int(detection[0]), int(detection[1])),
                              (int(detection[2]), int(detection[3])),
                              (0, 0, 255), 2)

        # show the output image
        cv2.imshow("Image", image)
        cv2.waitKey(1)
        video.write(image)

    plt.plot(IoUvsFrames)
    plt.show()