def __init__(self, hparams): self._session = None self.hparams = hparams # Set the random seed to be sure the same validation set # is used for each model np.random.seed(0) self.dataset = data_utils.DataSet(hparams) np.random.seed() # Put the random seed back to random # extra stuff for ray self._build_models() self._new_session() self._session.__enter__()
def __init__(self, hparams): self._session = None self.hparams = hparams # Set the random seed to be sure the same validation set # is used for each model np.random.seed(0) self.data_loader = data_utils.DataSet(hparams) np.random.seed() # Put the random seed back to random self.data_loader.reset() # extra stuff for ray self._build_models() self._new_session() self._setup_model(hparams) self._setup_teacher() if hparams.pretrained_model: tf.logging.info('load pretrained model') self.extract_model_spec(hparams.pretrained_model) self._session.__enter__()