def main(): parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter, description="Creates base genome profile.") parser.add_argument('raw_data', help="The raw data file (fastq[.gz])") parser.add_argument('config', help="The (yaml) configuration file") parser.add_argument('name', help="The name for the dataset, used in the created files") parser.add_argument('-p', '--num-cpus', help="The number of processors to use", type=int, default=default_num_cpus) parser.add_argument('--mem', help="The amount of RAM to request", default=default_mem) parser.add_argument('-t', '--tmp', help="""The location for temporary files. If not specified, program-specific temp locations are used.""", default=None) parser.add_argument('--do-not-call', action='store_true') parser.add_argument('--overwrite', help="""If this flag is present, existing files will be overwritten.""", action='store_true') parser.add_argument('-k', '--keep-intermediate-files', help="""If this flag is given, then all intermediate files will be kept; otherwise, they will be deleted. This feature is implemented piecemeal. If the --do-not-call flag is given, then nothing will be deleted.""", action='store_true') logging_utils.add_logging_options(parser) pgrm_utils.add_star_options(parser, star_executable) pgrm_utils.add_flexbar_options(parser) args = parser.parse_args() logging_utils.update_logging(args) msg = "[create-base-genome-profile]: {}".format(' '.join(sys.argv)) logger.info(msg) config = yaml.load(open(args.config), Loader=yaml.FullLoader) # check that all of the necessary programs are callable programs = [ 'flexbar', args.star_executable, 'samtools', 'bowtie2', 'remove-multimapping-reads' ] shell_utils.check_programs_exist(programs) required_keys = [ 'riboseq_data', 'ribosomal_index', 'gtf', 'genome_base_path', 'genome_name' ] utils.check_keys_exist(config, required_keys) note = config.get('note', None) call = not args.do_not_call keep_delete_files = args.keep_intermediate_files or args.do_not_call # Step 0: Running flexbar to remove adapter sequences raw_data = args.raw_data flexbar_target = filenames.get_without_adapters_base(config['riboseq_data'], args.name, note=note) without_adapters = filenames.get_without_adapters_fastq(config['riboseq_data'], args.name, note=note) adapter_seq_str = utils.get_config_argument(config, 'adapter_sequence', 'adapter-seq') adapter_file_str = utils.get_config_argument(config, 'adapter_file', 'adapters') # get all options, command line options override defaults flexbar_option_str = pgrm_utils.get_final_args(flexbar_options, args.flexbar_options) cmd = "flexbar -r {} -t {} {} {} {} -n {}".format(raw_data, flexbar_target, adapter_seq_str, adapter_file_str, flexbar_option_str, args.num_cpus) in_files = [raw_data] out_files = [without_adapters] file_checkers = { without_adapters: fastx_utils.check_fastq_file } shell_utils.call_if_not_exists(cmd, out_files, in_files=in_files, file_checkers=file_checkers, overwrite=args.overwrite, call=call) # Step 1: Running bowtie2 to remove rRNA alignments out = utils.abspath("dev", "null") # we do not care about the alignments without_rrna = filenames.get_without_rrna_fastq(config['riboseq_data'], args.name, note=note) with_rrna = filenames.get_with_rrna_fastq(config['riboseq_data'], args.name, note=note) cmd = "bowtie2 -p {} --very-fast -x {} -U {} -S {} --un-gz {} --al-gz {}".format( args.num_cpus, config['ribosomal_index'], without_adapters, out, without_rrna, with_rrna) in_files = [without_adapters] in_files.extend(pgrm_utils.get_bowtie2_index_files(config['ribosomal_index'])) out_files = [without_rrna, with_rrna] to_delete = [without_adapters] file_checkers = { without_rrna: fastx_utils.check_fastq_file } shell_utils.call_if_not_exists(cmd, out_files, in_files=in_files, file_checkers=file_checkers, overwrite=args.overwrite, call=call, keep_delete_files=keep_delete_files, to_delete=to_delete) # Step 2: Running STAR to align rRNA-depleted reads to genome star_output_prefix = filenames.get_riboseq_bam_base(config['riboseq_data'], args.name, note=note) genome_star_bam = "{}{}".format(star_output_prefix, "Aligned.sortedByCoord.out.bam") # get all options, command line options override defaults mem_bytes = utils.human2bytes(args.mem) star_options['limitBAMsortRAM'] = mem_bytes if args.tmp is not None: star_tmp_name = str(args.name + "_STARtmp") star_tmp_dir = pgrm_utils.create_star_tmp(args.tmp, star_tmp_name) star_options['outTmpDir'] = star_tmp_dir star_option_str = pgrm_utils.get_final_args(star_options, args.star_options) # If GFF3 specs, then we need to inform STAR. # Whether we have de novo or not, the format of "config['gtf']" has precedence. sjdb_gtf_tag_str = "" use_gff3_specs = config['gtf'].endswith('gff') gtf_file = filenames.get_gtf(config['genome_base_path'], config['genome_name'], is_gff3=use_gff3_specs, is_star_input=True) if use_gff3_specs: sjdb_gtf_tag_str = "--sjdbGTFtagExonParentTranscript Parent" cmd = ("{} --runThreadN {} --genomeDir {} --sjdbGTFfile {} {} --readFilesIn {} " "{} --outFileNamePrefix {}".format(args.star_executable, args.num_cpus, config['star_index'], gtf_file, sjdb_gtf_tag_str, without_rrna, star_option_str, star_output_prefix)) in_files = [without_rrna] in_files.extend(pgrm_utils.get_star_index_files(config['star_index'])) to_delete = [without_rrna] out_files = [genome_star_bam] file_checkers = { genome_star_bam: bam_utils.check_bam_file } shell_utils.call_if_not_exists(cmd, out_files, in_files=in_files, file_checkers=file_checkers, overwrite=args.overwrite, call=call, keep_delete_files=keep_delete_files, to_delete=to_delete) # now, we need to symlink the (genome) STAR output to that expected by the rest of the pipeline genome_sorted_bam = filenames.get_riboseq_bam(config['riboseq_data'], args.name, note=note) if os.path.exists(genome_star_bam): shell_utils.create_symlink(genome_star_bam, genome_sorted_bam, call) else: msg = ("Could not find the STAR genome bam alignment file. Unless " "--do-not-call was given, this is a problem.") logger.warning(msg) # create the bamtools index cmd = "samtools index -b {}".format(genome_sorted_bam) shell_utils.check_call(cmd, call=call) # check if we want to keep multimappers if 'keep_riboseq_multimappers' in config: return # remove multimapping reads from the genome file tmp_str = "" if args.tmp is not None: tmp_str = "--tmp {}".format(args.tmp) unique_genome_filename = filenames.get_riboseq_bam(config['riboseq_data'], args.name, is_unique=True, note=note) cmd = "remove-multimapping-reads {} {} {}".format(genome_sorted_bam, unique_genome_filename, tmp_str) in_files = [genome_sorted_bam] out_files = [unique_genome_filename] to_delete = [genome_star_bam, genome_sorted_bam] file_checkers = { unique_genome_filename: bam_utils.check_bam_file } shell_utils.call_if_not_exists(cmd, out_files, in_files=in_files, file_checkers=file_checkers, overwrite=args.overwrite, call=call, keep_delete_files=keep_delete_files, to_delete=to_delete)
def main(): parser = argparse.ArgumentParser( formatter_class=argparse.ArgumentDefaultsHelpFormatter, description="""This is a helper script to submit a set of samples to SLURM. It can also be used to run a set of samples sequentially. Due to limitations on the config file specification, all of the samples must use the same reference indices obtained by running 'create-base-genome-profile.""") parser.add_argument('config', help="The (yaml) configuration file") parser.add_argument('--tmp', help="The temp directory", default=None) parser.add_argument('--overwrite', help="""If this flag is present, existing files will be overwritten.""", action='store_true') parser.add_argument('--profiles-only', help="""If this flag is present, then only the pre-processing part of the pipeline will be called, i.e. profiles will be created for each sample specified in the config file, but no predictions will be made.""", action='store_true') parser.add_argument('--merge-replicates', help="""If this flag is present, then the ORF profiles from the replicates will be merged before making the final predictions""", action='store_true') parser.add_argument('--run-replicates', help="""If this flag is given with the --merge-replicates flag, then both the replicates and the individual samples will be run. This flag has no effect if --merge-replicates is not given.""", action='store_true') parser.add_argument('-k', '--keep-intermediate-files', help="""If this flag is given, then all intermediate files will be kept; otherwise, they will be deleted. This feature is implemented piecemeal. If the --do-not-call flag is given, then nothing will be deleted.""", action='store_true') slurm.add_sbatch_options(parser, num_cpus=default_num_cpus, mem=default_mem) logging_utils.add_logging_options(parser) pgrm_utils.add_star_options(parser, star_executable) pgrm_utils.add_flexbar_options(parser) args = parser.parse_args() logging_utils.update_logging(args) config = yaml.load(open(args.config), Loader=yaml.FullLoader) # check that all of the necessary programs are callable programs = [ 'flexbar', args.star_executable, 'samtools', 'bowtie2', 'create-base-genome-profile', 'remove-multimapping-reads', 'extract-metagene-profiles', 'estimate-metagene-profile-bayes-factors', 'select-periodic-offsets', 'extract-orf-profiles', 'estimate-orf-bayes-factors', 'select-final-prediction-set', 'create-orf-profiles', 'predict-translated-orfs', 'run-rpbp-pipeline' ] shell_utils.check_programs_exist(programs) required_keys = [ 'riboseq_data', 'riboseq_samples', 'ribosomal_index', 'star_index', 'genome_base_path', 'genome_name', 'fasta', 'gtf' ] utils.check_keys_exist(config, required_keys) # handle all option strings to call the pipeline script logging_str = logging_utils.get_logging_options_string(args) star_str = pgrm_utils.get_star_options_string(args) flexbar_str = pgrm_utils.get_flexbar_options_string(args) # handle do_not_call so that we do call the pipeline script, but that it does not run anything call = not args.do_not_call do_not_call_str = "" if not call: do_not_call_str = "--do-not-call" args.do_not_call = False overwrite_str = "" if args.overwrite: overwrite_str = "--overwrite" mem_str = "--mem {}".format(shlex.quote(args.mem)) keep_intermediate_str = "" if args.keep_intermediate_files: keep_intermediate_str = "--keep-intermediate-files" # check if we only want to create the profiles, in this case # we call run-rpbp-pipeline with the --profiles-only option profiles_only_str = "" if args.profiles_only: if args.merge_replicates: msg = ( "The --profiles-only option was given, this option has" "precedence, and it will override the --merge-replicates option!" ) logger.warning(msg) args.merge_replicates = False profiles_only_str = "--profiles-only" # if we merge the replicates, then we only use the rpbp script to create # the ORF profiles, but we still make predictions if args.merge_replicates and not args.run_replicates: profiles_only_str = "--profiles-only" if args.run_replicates and not args.merge_replicates: msg = ( "The --run-replicates option was given without the --merge-replicates " "option. It will be ignored.") logger.warning(msg) # collect the job_ids in case we are using slurm and need to merge replicates rep_to_condition = ribo_utils.get_riboseq_replicates_reverse_map(config) job_ids_mapping = defaultdict(list) sample_names = sorted(config['riboseq_samples'].keys()) for sample_name in sample_names: data = config['riboseq_samples'][sample_name] tmp_str = "" if args.tmp is not None: tmp = os.path.join(args.tmp, "{}_rpbp".format(sample_name)) tmp_str = "--tmp {}".format(tmp) cmd = "run-rpbp-pipeline {} {} {} --num-cpus {} {} {} {} {} {} {} {} {} {}".format( data, args.config, sample_name, args.num_cpus, mem_str, tmp_str, do_not_call_str, overwrite_str, profiles_only_str, keep_intermediate_str, logging_str, star_str, flexbar_str) job_id = slurm.check_sbatch(cmd, args=args) job_ids_mapping[rep_to_condition[sample_name]].append(job_id) # now, if we are running the "standard" pipeline, we are done if not args.merge_replicates: return # otherwise, we need to merge the replicates for each condition riboseq_replicates = ribo_utils.get_riboseq_replicates(config) merge_replicates_str = "--merge-replicates" for condition_name in sorted(riboseq_replicates.keys()): # then we predict the ORFs cmd = "predict-translated-orfs {} {} --num-cpus {} {} {} {} {}".format( args.config, condition_name, args.num_cpus, do_not_call_str, overwrite_str, logging_str, merge_replicates_str) job_ids = job_ids_mapping[condition_name] slurm.check_sbatch(cmd, args=args, dependencies=job_ids)
def main(): parser = argparse.ArgumentParser( formatter_class=argparse.ArgumentDefaultsHelpFormatter, description="""This script runs the Rp-Bp pipelines on a given sample. It requires a YAML config file that includes a number of keys. Please see the documentation for a complete description.""") parser.add_argument('raw_data', help="The raw data file (fastq[.gz])") parser.add_argument('config', help="The (yaml) configuration file") parser.add_argument( 'name', help="The name for the dataset, used in the created files") parser.add_argument('--tmp', help="The temp directory", default=None) parser.add_argument('--overwrite', help="If this flag is present, existing files " "will be overwritten.", action='store_true') parser.add_argument('--profiles-only', help="""If this flag is present, then only the ORF profiles will be created""", action='store_true') parser.add_argument('-k', '--keep-intermediate-files', help="""If this flag is given, then all intermediate files will be kept; otherwise, they will be deleted. This feature is implemented piecemeal. If the --do-not-call flag is given, then nothing will be deleted.""", action='store_true') slurm.add_sbatch_options(parser, num_cpus=default_num_cpus, mem=default_mem) logging_utils.add_logging_options(parser) pgrm_utils.add_star_options(parser, star_executable) pgrm_utils.add_flexbar_options(parser) args = parser.parse_args() logging_utils.update_logging(args) config = yaml.load(open(args.config), Loader=yaml.FullLoader) # check that all of the necessary programs are callable programs = [ 'flexbar', args.star_executable, 'samtools', 'bowtie2', 'create-base-genome-profile', 'remove-multimapping-reads', 'extract-metagene-profiles', 'estimate-metagene-profile-bayes-factors', 'select-periodic-offsets', 'extract-orf-profiles', 'estimate-orf-bayes-factors', 'select-final-prediction-set', 'create-orf-profiles', 'predict-translated-orfs' ] shell_utils.check_programs_exist(programs) required_keys = [ 'riboseq_data', 'ribosomal_index', 'star_index', 'genome_base_path', 'genome_name', 'fasta', 'gtf' ] utils.check_keys_exist(config, required_keys) # if using slurm, submit the script, but we cannot use sys.argv directly # as the shell strips the quotes around the arguments if args.use_slurm: cmd = "{}".format(' '.join("'" + s + "'" if '"' in s else s for s in sys.argv)) slurm.check_sbatch(cmd, args=args) return # handle all option strings to call programs logging_str = logging_utils.get_logging_options_string(args) star_str = pgrm_utils.get_star_options_string(args) flexbar_str = pgrm_utils.get_flexbar_options_string(args) # handle do_not_call so that we do call the preprocessing script, # but that it does not run anything call = not args.do_not_call do_not_call_str = "" if not call: do_not_call_str = "--do-not-call" overwrite_str = "" if args.overwrite: overwrite_str = "--overwrite" keep_intermediate_str = "" if args.keep_intermediate_files: keep_intermediate_str = "--keep-intermediate-files" tmp_str = "" if args.tmp is not None: tmp_str = "--tmp {}".format(shlex.quote(args.tmp)) mem_str = "--mem {}".format(shlex.quote(args.mem)) cmd = ("create-orf-profiles {} {} {} --num-cpus {} {} {} {} {} {} {} {} {}" .format(args.raw_data, args.config, args.name, args.num_cpus, mem_str, do_not_call_str, overwrite_str, keep_intermediate_str, logging_str, tmp_str, star_str, flexbar_str)) shell_utils.check_call(cmd) # check if we only want to create the profiles if args.profiles_only: return # then we predict the ORFs cmd = ("predict-translated-orfs {} {} --num-cpus {} {} {} {}".format( args.config, args.name, args.num_cpus, do_not_call_str, overwrite_str, logging_str)) shell_utils.check_call(cmd)
def main(): parser = argparse.ArgumentParser( formatter_class=argparse.ArgumentDefaultsHelpFormatter, description="This script creates a simple latex document.") parser.add_argument('config', help="The (yaml) config file for the project") parser.add_argument('out', help="The path for the output files") parser.add_argument('-l', '--min-orf-length', help="The minimum length for ORFs (in " "nucleotides) to consider in the analyis", type=int, default=default_min_orf_length) parser.add_argument( '--num-cpus', help="The number of processors to use for counting " "the matching peptides coverage for each predicted ORF.", type=int, default=default_num_cpus) parser.add_argument('--overwrite', help="If this flag is present, existing files will " "be overwritten.", action='store_true') parser.add_argument( '--note', help="If this option is given, it will be used in the " "filenames.\n\nN.B. This REPLACES the note in the config file.", default=default_note) utils.add_logging_options(parser) args = parser.parse_args() utils.update_logging(args) config = yaml.load(open(args.config), Loader=yaml.FullLoader) # keep multimappers? is_unique = not ('keep_riboseq_multimappers' in config) programs = ['create-orf-peptide-coverage-line-graph'] utils.check_programs_exist(programs) required_keys = ['riboseq_data', 'riboseq_samples'] utils.check_keys_exist(config, required_keys) # make sure the path to the output file exists os.makedirs(args.out, exist_ok=True) note_str = config.get('note', None) out_note_str = note_str if args.note is not None and len(args.note) > 0: out_note_str = args.note project_name = config.get("project_name", default_project_name) title = "Proteomics analysis for {}".format(project_name) abstract = "This document shows the results of proteomics analysis." header = latex.get_header_text(title, abstract) footer = latex.get_footer_text() tex_file = os.path.join(args.out, "proteomics-report.tex") with open(tex_file, 'w') as out: out.write(header) out.write("\n") title = "ORF peptide coverage" latex.section(out, title) for name, data in config['riboseq_samples'].items(): msg = "Processing sample: {}".format(name) logging.info(msg) logging.debug("overwrite: {}".format(args.overwrite)) create_figures(args.config, config, name, args) title = name latex.subsection(out, title) try: lengths, offsets = riboutils.ribo_utils.get_periodic_lengths_and_offsets( config, name, is_unique=is_unique) except FileNotFoundError: msg = "Could not parse out lengths and offsets for sample: {}. Skipping".format( name) logging.error(msg) return peptide_coverage_line_graph = filenames.get_peptide_coverage_line_graph( config['riboseq_data'], name, length=lengths, offset=offsets, is_unique=is_unique, note=out_note_str) if os.path.exists(peptide_coverage_line_graph): latex.begin_figure(out) latex.write_graphics(out, peptide_coverage_line_graph, width=0.9) latex.end_figure(out) else: text = "Problem creating ORF peptide coverage plot" out.write(text) out.write("\n") latex.clearpage(out) out.write(footer) os.chdir(args.out) cmd = "pdflatex -shell-escape proteomics-report" utils.check_call(cmd) utils.check_call(cmd) # call again to fix references
def main(): parser = argparse.ArgumentParser( formatter_class=argparse.ArgumentDefaultsHelpFormatter, description='''Prepare a reference genome and matching annotations, including labelled ORFs, for use with the Rp-Bp periodicity estimation and ORF translation prediction pipeline.''') parser.add_argument('config', help='''The (yaml) configuration file''') parser.add_argument('--overwrite', help='''If this flag is present, existing files will be overwritten.''', action='store_true') slurm.add_sbatch_options(parser, num_cpus=default_num_cpus, mem=default_mem) logging_utils.add_logging_options(parser) pgrm_utils.add_star_options(parser, star_executable) args = parser.parse_args() logging_utils.update_logging(args) config = yaml.load(open(args.config), Loader=yaml.FullLoader) # check required callable programs, config keys and files programs = [ 'extract-orf-coordinates', 'label-orfs', 'bowtie2-build-s', 'split-bed12-blocks', 'gtf-to-bed12', args.star_executable ] shell_utils.check_programs_exist(programs) required_keys = [ 'genome_base_path', 'genome_name', 'gtf', 'fasta', 'ribosomal_fasta', 'ribosomal_index', 'star_index' ] utils.check_keys_exist(config, required_keys) files = [config['gtf'], config['fasta'], config['ribosomal_fasta']] if 'de_novo_gtf' in config: files += [config['de_novo_gtf']] utils.check_files_exist(files, source='prepare-rpbp-genome') # check if we want to use slurm if args.use_slurm: cmd = ' '.join(sys.argv) slurm.check_sbatch(cmd, args=args) return call = not args.do_not_call # the rRNA index cmd = "bowtie2-build-s {} {}".format(config['ribosomal_fasta'], config['ribosomal_index']) in_files = [config['ribosomal_fasta']] out_files = pgrm_utils.get_bowtie2_index_files(config['ribosomal_index']) shell_utils.call_if_not_exists(cmd, out_files, in_files=in_files, overwrite=args.overwrite, call=call) # the STAR index mem = utils.human2bytes(args.mem) cmd = ("{} --runMode genomeGenerate --genomeDir {} --genomeFastaFiles {} " "--runThreadN {} --limitGenomeGenerateRAM {}".format( args.star_executable, config['star_index'], config['fasta'], args.num_cpus, mem)) in_files = [config['fasta']] out_files = pgrm_utils.get_star_index_files(config['star_index']) shell_utils.call_if_not_exists(cmd, out_files, in_files=in_files, overwrite=args.overwrite, call=call) # get the ORFs get_orfs(config['gtf'], args, config, is_annotated=True, is_de_novo=False) # we will use these files later in the pipeline annotated_orfs = filenames.get_orfs(config['genome_base_path'], config['genome_name'], note=config.get('orf_note'), is_annotated=True, is_de_novo=False) orfs_genomic = filenames.get_orfs(config['genome_base_path'], config['genome_name'], note=config.get('orf_note')) annotated_exons_file = filenames.get_exons(config['genome_base_path'], config['genome_name'], note=config.get('orf_note'), is_annotated=True, is_de_novo=False) exons_file = filenames.get_exons(config['genome_base_path'], config['genome_name'], note=config.get('orf_note')) annotated_labeled_orfs = filenames.get_labels(config['genome_base_path'], config['genome_name'], note=config.get('orf_note'), is_annotated=True, is_de_novo=False) labeled_orfs = filenames.get_labels(config['genome_base_path'], config['genome_name'], note=config.get('orf_note')) use_gff3_specs = config['gtf'].endswith('gff') gtf_file = filenames.get_gtf(config['genome_base_path'], config['genome_name'], is_gff3=use_gff3_specs, is_star_input=True) # now, check if we have a de novo assembly if 'de_novo_gtf' in config: get_orfs(config['de_novo_gtf'], args, config, is_annotated=False, is_de_novo=True) # we need to concat the ORF and exon files de_novo_orfs = filenames.get_orfs(config['genome_base_path'], config['genome_name'], note=config.get('orf_note'), is_annotated=False, is_de_novo=True) orfs_files = [annotated_orfs, de_novo_orfs] orfs_files_str = ' '.join(orfs_files) msg = ("Concatenating files. Output file: {}; Input files: {}".format( orfs_genomic, orfs_files_str)) logger.info(msg) if call: concatenated_bed = bed_utils.concatenate(orfs_files, sort_bed=True) concatenated_bed['orf_num'] = range(len(concatenated_bed)) additional_columns = ['orf_num', 'orf_len', 'orf_type'] fields = bed_utils.bed12_field_names + additional_columns bed_utils.write_bed(concatenated_bed[fields], orfs_genomic) else: msg = "Skipping concatenation due to --call value" logger.info(msg) de_novo_exons_file = filenames.get_exons(config['genome_base_path'], config['genome_name'], note=config.get('orf_note'), is_annotated=False, is_de_novo=True) exons_files = [annotated_exons_file, de_novo_exons_file] exons_files_str = ' '.join(exons_files) msg = ("Concatenating files. Output file: {}; Input files: {}".format( exons_file, exons_files_str)) logger.info(msg) if call: concatenated_bed = bed_utils.concatenate(exons_files, sort_bed=True) fields = bed_utils.bed6_field_names + [ 'exon_index', 'transcript_start' ] bed_utils.write_bed(concatenated_bed[fields], exons_file) else: msg = "Skipping concatenation due to --call value" logger.info(msg) de_novo_labeled_orfs = filenames.get_labels( config['genome_base_path'], config['genome_name'], note=config.get('orf_note'), is_annotated=False, is_de_novo=True) label_files = [annotated_labeled_orfs, de_novo_labeled_orfs] label_files_str = ' '.join(label_files) msg = ("Concatenating files. Output file: {}; Input files: {}".format( labeled_orfs, label_files_str)) logger.info(msg) if call: # not sorted, as is concatenated_bed = bed_utils.concatenate(label_files, sort_bed=False) bed_utils.write_bed(concatenated_bed, labeled_orfs) else: msg = "Skipping concatenation due to --call value" logger.info(msg) # we also need to concat the annotations to inform STAR # there is no particular reason to merge and sort the files, so # we just concatenate them... if (config['de_novo_gtf'].endswith('gff') == use_gff3_specs): cmd = ("awk '!/^#/' {} {} > {}".format(config['gtf'], config['de_novo_gtf'], gtf_file)) in_files = [config['gtf'], config['de_novo_gtf']] out_files = [gtf_file] shell_utils.call_if_not_exists(cmd, out_files, in_files=in_files, overwrite=args.overwrite, call=call) else: msg = ( "Skipping concatenation due to mismatch in format specifications (GTF2/GFF3)" "for reference and do novo annotations. Symlink to reference annotations created." ) logger.warning(msg) if os.path.exists(config['gtf']): shell_utils.create_symlink(config['gtf'], gtf_file, call) else: # if we do not have a de novo assembly, symlink the files if os.path.exists(annotated_orfs): shell_utils.create_symlink(annotated_orfs, orfs_genomic, call) if os.path.exists(annotated_exons_file): shell_utils.create_symlink(annotated_exons_file, exons_file, call) if os.path.exists(annotated_labeled_orfs): shell_utils.create_symlink(annotated_labeled_orfs, labeled_orfs, call) if os.path.exists(config['gtf']): shell_utils.create_symlink(config['gtf'], gtf_file, call)
def main(): parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter, description="""This script runs all of the processing necessary to produce the signals used for ORF translation prediction. In particular, it creates the metagene profiles, selected the periodic fragments and generate the ORF profiles.""") parser.add_argument('raw_data', help="The raw data file (fastq[.gz])") parser.add_argument('config', help="The (yaml) configuration file") parser.add_argument('name', help="The name for the dataset, used in the created files") parser.add_argument('-p', '--num-cpus', help="The number of processors to use", type=int, default=default_num_cpus) parser.add_argument('--mem', help="The amount of RAM to request", default=default_mem) parser.add_argument('--tmp', help="The location for temp files", default=None) parser.add_argument('--do-not-call', action='store_true') parser.add_argument('--overwrite', help="""If this flag is present, existing files will be overwritten.""", action='store_true') parser.add_argument('-k', '--keep-intermediate-files', help="""If this flag is given, then all intermediate files will be kept; otherwise, they will be deleted. This feature is implemented piecemeal. If the --do-not-call flag is given, then nothing will be deleted.""", action='store_true') logging_utils.add_logging_options(parser) pgrm_utils.add_star_options(parser, star_executable) pgrm_utils.add_flexbar_options(parser) args = parser.parse_args() logging_utils.update_logging(args) msg = "[create-orf-profiles]: {}".format(' '.join(sys.argv)) logger.info(msg) config = yaml.load(open(args.config), Loader=yaml.FullLoader) # check that all of the necessary programs are callable programs = [ 'flexbar', args.star_executable, 'samtools', 'bowtie2', 'create-base-genome-profile', 'remove-multimapping-reads', 'extract-metagene-profiles', 'estimate-metagene-profile-bayes-factors', 'select-periodic-offsets', 'extract-orf-profiles' ] shell_utils.check_programs_exist(programs) required_keys = [ 'riboseq_data', 'ribosomal_index', 'gtf', 'genome_base_path', 'genome_name' ] utils.check_keys_exist(config, required_keys) note = config.get('note', None) models_base = config.get('models_base', default_models_base) logging_str = logging_utils.get_logging_options_string(args) star_str = pgrm_utils.get_star_options_string(args) flexbar_str = pgrm_utils.get_flexbar_options_string(args) # handle do_not_call so that we do call the preprocessing script, # but that it does not run anything call = not args.do_not_call do_not_call_argument = "" if not call: do_not_call_argument = "--do-not-call" overwrite_argument = "" if args.overwrite: overwrite_argument = "--overwrite" keep_intermediate_str = "" if args.keep_intermediate_files: keep_intermediate_str = "--keep-intermediate-files" tmp_str = "" if args.tmp is not None: tmp_str = "--tmp {}".format(args.tmp) mem_str = "--mem {}".format(shlex.quote(args.mem)) # check if we want to keep multimappers is_unique = not ('keep_riboseq_multimappers' in config) riboseq_raw_data = args.raw_data riboseq_bam_filename = filenames.get_riboseq_bam(config['riboseq_data'], args.name, is_unique=is_unique, note=note) cmd = ("create-base-genome-profile {} {} {} --num-cpus {} {} {} {} {} {} {} {} {}".format( riboseq_raw_data, args.config, args.name, args.num_cpus, do_not_call_argument, overwrite_argument, logging_str, star_str, tmp_str, flexbar_str, keep_intermediate_str, mem_str)) # There could be cases where we start somewhere in the middle of creating # the base genome profile. So even if the "raw data" is not available, # we still want to call the base pipeline. # in_files = [riboseq_raw_data] in_files = [] out_files = [riboseq_bam_filename] # we always call this, and pass --do-not-call through shell_utils.call_if_not_exists(cmd, out_files, in_files=in_files, overwrite=args.overwrite, call=True) # Extract the metagene profiles start_upstream_str = utils.get_config_argument(config, 'metagene_start_upstream', 'start-upstream', default=metagene_options['metagene_start_upstream']) start_downstream_str = utils.get_config_argument(config, 'metagene_start_downstream', 'start-downstream', default=metagene_options['metagene_start_downstream']) end_upstream_str = utils.get_config_argument(config, 'metagene_end_upstream', 'end-upstream', default=metagene_options['metagene_end_upstream']) end_downstream_str = utils.get_config_argument(config, 'metagene_end_downstream', 'end-downstream', default=metagene_options['metagene_end_downstream']) metagene_profiles = filenames.get_metagene_profiles(config['riboseq_data'], args.name, is_unique=is_unique, note=note) # use the canonical transcripts for extracting the metagene profiles transcript_bed = filenames.get_bed(config['genome_base_path'], config['genome_name'], is_merged=False, is_annotated=True) cmd = ("extract-metagene-profiles {} {} {} --num-cpus {} {} {} {} {} {}".format( riboseq_bam_filename, transcript_bed, metagene_profiles, args.num_cpus, logging_str, start_upstream_str, start_downstream_str, end_upstream_str, end_downstream_str)) in_files = [riboseq_bam_filename, transcript_bed] out_files = [metagene_profiles] file_checkers = { metagene_profiles: utils.check_gzip_file } shell_utils.call_if_not_exists(cmd, out_files, in_files=in_files, file_checkers=file_checkers, overwrite=args.overwrite, call=call) # estimate the periodicity for each offset for all read lengths metagene_profile_bayes_factors = filenames.get_metagene_profiles_bayes_factors( config['riboseq_data'], args.name, is_unique=is_unique, note=note) periodic_models = filenames.get_models(models_base, 'periodic') non_periodic_models = filenames.get_models(models_base, 'nonperiodic') periodic_models_str = ' '.join(periodic_models) non_periodic_models_str = ' '.join(non_periodic_models) periodic_models_str = "--periodic-models {}".format(periodic_models_str) non_periodic_models_str = "--nonperiodic-models {}".format(non_periodic_models_str) periodic_offset_start_str = utils.get_config_argument(config, 'periodic_offset_start', default=metagene_options['periodic_offset_start']) periodic_offset_end_str = utils.get_config_argument(config, 'periodic_offset_end', default=metagene_options['periodic_offset_end']) metagene_profile_length_str = utils.get_config_argument(config, 'metagene_profile_length', default=metagene_options['metagene_profile_length']) seed_str = utils.get_config_argument(config, 'seed', default=metagene_options['seed']) chains_str = utils.get_config_argument(config, 'chains', default=metagene_options['chains']) iterations_str = utils.get_config_argument(config, 'metagene_iterations', 'iterations', default=metagene_options['metagene_iterations']) cmd = ("estimate-metagene-profile-bayes-factors {} {} --num-cpus {} {} {} " "{} {} {} {} {} {} {}".format(metagene_profiles, metagene_profile_bayes_factors, args.num_cpus, periodic_models_str, non_periodic_models_str, periodic_offset_start_str, periodic_offset_end_str, metagene_profile_length_str, seed_str, chains_str, iterations_str, logging_str)) in_files = [metagene_profiles] in_files.extend(periodic_models) in_files.extend(non_periodic_models) out_files = [metagene_profile_bayes_factors] file_checkers = { metagene_profile_bayes_factors: utils.check_gzip_file } shell_utils.call_if_not_exists(cmd, out_files, in_files=in_files, file_checkers=file_checkers, overwrite=args.overwrite, call=call) # select the best read lengths for constructing the signal periodic_offsets = filenames.get_periodic_offsets(config['riboseq_data'], args.name, is_unique=is_unique, note=note) cmd = "select-periodic-offsets {} {}".format(metagene_profile_bayes_factors, periodic_offsets) in_files = [metagene_profile_bayes_factors] out_files = [periodic_offsets] file_checkers = { periodic_offsets: utils.check_gzip_file } shell_utils.call_if_not_exists(cmd, out_files, in_files=in_files, file_checkers=file_checkers, overwrite=args.overwrite, call=call) # get the lengths and offsets which meet the required criteria from the config file lengths, offsets = ribo_utils.get_periodic_lengths_and_offsets(config, args.name, args.do_not_call, is_unique=is_unique, default_params=metagene_options) if len(lengths) == 0: msg = ("No periodic read lengths and offsets were found. Try relaxing " "min_metagene_profile_count, min_metagene_bf_mean, max_metagene_bf_var, " "and/or min_metagene_bf_likelihood. Quitting.") logger.critical(msg) return lengths_str = ' '.join(lengths) offsets_str = ' '.join(offsets) seqname_prefix_str = utils.get_config_argument(config, 'seqname_prefix') # extract the riboseq profiles for each orf unique_filename = filenames.get_riboseq_bam(config['riboseq_data'], args.name, is_unique=is_unique, note=note) profiles_filename = filenames.get_riboseq_profiles(config['riboseq_data'], args.name, length=lengths, offset=offsets, is_unique=is_unique, note=note) orfs_genomic = filenames.get_orfs(config['genome_base_path'], config['genome_name'], note=config.get('orf_note')) exons_file = filenames.get_exons(config['genome_base_path'], config['genome_name'], note=config.get('orf_note')) cmd = ("extract-orf-profiles {} {} {} {} --lengths {} --offsets {} {} {} --num-cpus {} ".format( unique_filename, orfs_genomic, exons_file, profiles_filename, lengths_str, offsets_str, logging_str, seqname_prefix_str, args.num_cpus)) in_files = [orfs_genomic, exons_file, unique_filename] out_files = [profiles_filename] # todo: implement a file checker for mtx files shell_utils.call_if_not_exists(cmd, out_files, in_files=in_files, overwrite=args.overwrite, call=call)
def main(): parser = argparse.ArgumentParser( formatter_class=argparse.ArgumentDefaultsHelpFormatter, description= "This script identifies the orf peptide matches for all samples in " "a project.") parser.add_argument('config', help="The (yaml) config file") parser.add_argument('--peptide-filter-field', help="The field to use for " "filtering the peptides from MaxQuant", default=default_peptide_filter_field) parser.add_argument('--peptide-filter-value', help="All peptides with a value " "greater than the filter value will be removed", type=float, default=default_peptide_filter_value) parser.add_argument('--peptide-separator', help="The separator in the " "peptide file", default=default_peptide_separator) parser.add_argument( '--note', help="If this option is given, it will be used in " "the output filenames.\n\nN.B. This REPLACES the note in the config file.", default=default_note) slurm.add_sbatch_options(parser) logging_utils.add_logging_options(parser) args = parser.parse_args() logging_utils.update_logging(args) logging_str = logging_utils.get_logging_options_string(args) config = yaml.load(open(args.config), Loader=yaml.FullLoader) call = not args.do_not_call programs = ['get-orf-peptide-matches'] shell_utils.check_programs_exist(programs) required_keys = [ 'peptide_files', 'peptide_cell_type_analysis', 'riboseq_data', 'riboseq_samples' ] utils.check_keys_exist(config, required_keys) note_str = config.get('note', None) out_note_str = note_str if args.note is not None and len(args.note) > 0: out_note_str = args.note args_dict = vars(args) peptide_filter_field_str = utils.get_config_argument( args_dict, 'peptides_filter_field') peptide_filter_value_str = utils.get_config_argument( args_dict, 'peptides_filter_value') peptide_separator_str = utils.get_config_argument(args_dict, 'peptide_separator') num_cpus_str = utils.get_config_argument(args_dict, 'num_cpus') cell_types = ribo_utils.get_riboseq_cell_type_samples(config) for cell_type, peptide_files in config['peptide_cell_type_analysis'].items( ): if cell_type not in cell_types: msg = ( "Could not find cell_type specification. Please check the config " "file: {}".format(cell_type)) logger.warning(msg) continue cell_type_protein = ribo_filenames.get_riboseq_cell_type_protein( config['riboseq_data'], cell_type, is_filtered=True, note=note_str) if not os.path.exists(cell_type_protein): msg = ("Could not find cell_type protein fasta. Skipping: {}". format(cell_type_protein)) logger.warning(msg) continue for peptide_file in peptide_files: if peptide_file not in config['peptide_files']: msg = ( "Could not find peptide_file specification. Please check " "the config file: {}".format(peptide_file)) logger.warning(msg) continue peptide_txt_file = config['peptide_files'][peptide_file] if not os.path.exists(peptide_txt_file): msg = ("Could not find peptide.txt file. Skipping: {}".format( peptide_txt_file)) logger.warning(msg) continue peptide_matches = ribo_filenames.get_riboseq_peptide_matches( config['riboseq_data'], cell_type, peptide_file, is_filtered=True, note=out_note_str) cmd = "get-orf-peptide-matches {} {} {} {} {} {} {} {}".format( cell_type_protein, peptide_txt_file, peptide_matches, num_cpus_str, peptide_filter_field_str, peptide_filter_value_str, peptide_separator_str, logging_str) slurm.check_sbatch(cmd, args=args)
def main(): parser = argparse.ArgumentParser( formatter_class=argparse.ArgumentDefaultsHelpFormatter, description= "This script creates the plots which detail the basic characteristics " "of the ORF predictions from the Rp-Bp pipeline. It also creates and compiles (if " "possible) a latex report for them.") parser.add_argument('config', help="The (yaml) config file") parser.add_argument('out', help="The base output directory for the latex report") parser.add_argument( '--show-unfiltered-orfs', help="If this flag is " "present, bar charts showing the distribution of the types of the " "unfiltered ORF set will be included", action='store_true') parser.add_argument( '--show-orf-periodicity', help="If this flag is " "present, bar charts showing the periodicity of each ORF type will be " "included in the report.", action='store_true') parser.add_argument('--uniprot', help="The uniprot ORF lengths, if available", default=default_uniprot) parser.add_argument('--uniprot-label', help="The label to use for the uniprot ORFs in " "the plot", default=default_uniprot_label) parser.add_argument('--image-type', help="The format of the image files. This must be " "a format usable by matplotlib.", default=default_image_type) parser.add_argument('--overwrite', help="If this flag is present, existing files will " "be overwritten.", action='store_true') parser.add_argument( '--note', help="If this option is given, it will be used in the " "filenames.\n\nN.B. This REPLACES the note in the config file.", default=None) parser.add_argument( '--show-chisq', help="If this flag is given, then the " "results from Rp-chi will be included in the document; otherwise, they " "will not be created or shown.", action='store_true') parser.add_argument('-t', '--tmp', help="A location for temporary files", default=None) slurm.add_sbatch_options(parser, num_cpus=default_num_cpus) logging_utils.add_logging_options(parser) args = parser.parse_args() logging_utils.update_logging(args) config = yaml.load(open(args.config), Loader=yaml.FullLoader) # keep multimappers? is_unique = not ('keep_riboseq_multimappers' in config) programs = [ 'create-orf-length-distribution-line-graph', 'create-orf-types-bar-chart', 'visualize-orf-type-metagene-profiles' ] shell_utils.check_programs_exist(programs) required_keys = ['riboseq_data', 'riboseq_samples'] utils.check_keys_exist(config, required_keys) if args.use_slurm: cmd = ' '.join(sys.argv) slurm.check_sbatch(cmd, args=args) return # by default, we will not include chisq chisq_values = [False] if args.show_chisq: chisq_values = [True, False] filtered_values = [True] if args.show_unfiltered_orfs: filtered_values = [True, False] grouped_values = [True, False] # make sure the path to the output file exists os.makedirs(args.out, exist_ok=True) # first, create all of the figures create_all_figures(config, args) note_str = config.get('note', None) out_note_str = note_str if args.note is not None and len(args.note) > 0: out_note_str = args.note fraction = config.get('smoothing_fraction', None) reweighting_iterations = config.get('smoothing_reweighting_iterations', None) project_name = config.get("project_name", default_project_name) title = "Rp-Bp prediction analysis for {}".format(project_name) abstract = "This document shows the results of the Rp-Bp pipeline analysis." #tex_file = os.path.join(args.out, "prediction-report.tex") tex_file = filenames.get_rpbp_prediction_report(args.out, out_note_str) with open(tex_file, 'w') as out: latex.begin_document(out, title, abstract) latex.write(out, "\n") latex.clearpage(out) ### ORF type distributions title = "Predicted ORF type distributions" latex.section(out, title) # first, handle all of the regular datasets sample_names = sorted(config['riboseq_samples'].keys()) # and check if we also have replicates replicate_names = [] if 'riboseq_biological_replicates' in config: replicate_names = sorted( ribo_utils.get_riboseq_replicates(config).keys()) strands = ["+", "-"] i = 0 for sample_name in sample_names: try: lengths, offsets = ribo_utils.get_periodic_lengths_and_offsets( config, sample_name, is_unique=is_unique, default_params=metagene_options) except FileNotFoundError: msg = ( "Could not parse out lengths and offsets for sample: {}. " "Skipping".format(sample_name)) logger.error(msg) continue caption = "ORF types: {}".format(sample_name) is_first = True # first, just dump all of the bar charts to the page it = itertools.product(grouped_values, chisq_values, filtered_values) for is_grouped, is_chisq, is_filtered in it: if is_chisq: f = None rw = None else: f = fraction rw = reweighting_iterations orf_types_bar_chart = filenames.get_orf_types_bar_chart( config['riboseq_data'], sample_name, length=lengths, offset=offsets, is_unique=is_unique, note=out_note_str, image_type=args.image_type, fraction=f, reweighting_iterations=rw, is_grouped=is_grouped, is_chisq=is_chisq, is_filtered=is_filtered) msg = "Looking for image file: {}".format(orf_types_bar_chart) logger.debug(msg) if os.path.exists(orf_types_bar_chart): if is_first or (i % 4 == 0): latex.begin_figure(out) is_first = False i += 1 latex.write_graphics(out, orf_types_bar_chart, height=0.15) if i % 6 == 0: latex.write_caption(out, caption) latex.end_figure(out) latex.clearpage(out) else: msg = "Could not find image: {}".format( orf_types_bar_chart) logger.warning(msg) if (i > 0) and (i % 6) != 0: latex.write_caption(out, caption) latex.end_figure(out) #latex.clearpage(out) if i % 6 != 0: latex.clearpage(out) # now, if the config file specifies replicates, create figures for those i = 0 for replicate_name in replicate_names: lengths = None offsets = None caption = "ORF types: {}".format(replicate_name) it = itertools.product(grouped_values, chisq_values, filtered_values) is_first = True for is_grouped, is_chisq, is_filtered in it: if is_chisq: f = None rw = None else: f = fraction rw = reweighting_iterations orf_types_bar_chart = filenames.get_orf_types_bar_chart( config['riboseq_data'], replicate_name, length=lengths, offset=offsets, is_unique=is_unique, note=out_note_str, image_type=args.image_type, fraction=f, reweighting_iterations=rw, is_grouped=is_grouped, is_chisq=is_chisq, is_filtered=is_filtered) msg = "Looking for image file: {}".format(orf_types_bar_chart) logger.debug(msg) if os.path.exists(orf_types_bar_chart): if is_first or (i % 4 == 0): latex.begin_figure(out) is_first = False i += 1 latex.write_graphics(out, orf_types_bar_chart, height=0.15) if i % 6 == 0: latex.write_caption(out, caption) latex.end_figure(out) latex.clearpage(out) else: msg = "Could not find image: {}".format( orf_types_bar_chart) logger.warning(msg) if (i > 0) and (i % 6) != 0: latex.write_caption(out, caption) latex.end_figure(out) #latex.clearpage(out) if i % 6 != 0: latex.clearpage(out) ### ORF type length distributions title = "Predicted ORF type length distributions" latex.section(out, title) i = 0 for sample_name in sample_names: try: lengths, offsets = ribo_utils.get_periodic_lengths_and_offsets( config, sample_name, is_unique=is_unique, default_params=metagene_options) except FileNotFoundError: msg = ( "Could not parse out lengths and offsets for sample: {}. " "Skipping".format(sample_name)) logger.error(msg) continue caption = "ORF type length distributions: {}".format(sample_name) is_first = True it = itertools.product(grouped_values, chisq_values) for is_grouped, is_chisq in it: if is_chisq: f = None rw = None else: f = fraction rw = reweighting_iterations orf_length_line_graph = filenames.get_orf_length_distribution_line_graph( config['riboseq_data'], sample_name, length=lengths, offset=offsets, is_unique=is_unique, note=out_note_str, image_type=args.image_type, fraction=f, reweighting_iterations=rw, is_grouped=is_grouped, is_chisq=is_chisq) if os.path.exists(orf_length_line_graph): if is_first or (i % 4 == 0): latex.begin_figure(out) is_first = False i += 1 latex.write_graphics(out, orf_length_line_graph, height=0.15) if i % 4 == 0: latex.write_caption(out, caption) latex.end_figure(out) latex.clearpage(out) else: msg = "Could not find image: {}".format( orf_length_line_graph) logger.debug(msg) if (i > 0) and (i % 4) != 0: latex.write_caption(out, caption) latex.end_figure(out) #latex.clearpage(out) if i % 4 != 0: latex.clearpage(out) # now, if the config file specifies replicates, create figures for those i = 0 for replicate_name in replicate_names: lengths = None offsets = None caption = "ORF types: {}".format(replicate_name) is_first = True it = itertools.product(grouped_values, chisq_values) for is_grouped, is_chisq in it: if is_chisq: f = None rw = None else: f = fraction rw = reweighting_iterations orf_length_line_graph = filenames.get_orf_length_distribution_line_graph( config['riboseq_data'], replicate_name, length=lengths, offset=offsets, is_unique=is_unique, note=out_note_str, image_type=args.image_type, fraction=f, reweighting_iterations=rw, is_grouped=is_grouped, is_chisq=is_chisq) if os.path.exists(orf_length_line_graph): if is_first or (i % 4 == 0): latex.begin_figure(out) is_first = False i += 1 latex.write_graphics(out, orf_length_line_graph, height=0.15) if i % 4 == 0: latex.write_caption(out, caption) latex.end_figure(out) latex.clearpage(out) else: msg = "Could not find image: {}".format( orf_length_line_graph) logger.debug(msg) if (i > 0) and (i % 4) != 0: latex.write_caption(out, caption) latex.end_figure(out) #latex.clearpage(out) if i % 4 != 0: latex.clearpage(out) ### ORF type metagene profiles if args.show_orf_periodicity: title = "Predicted ORF type metagene profiles" latex.section(out, title) i = 0 for sample_name in sample_names: try: lengths, offsets = ribo_utils.get_periodic_lengths_and_offsets( config, sample_name, is_unique=is_unique, default_params=metagene_options) except FileNotFoundError: msg = ( "Could not parse out lengths and offsets for sample: {}. " "Skipping".format(sample_name)) logger.error(msg) continue caption = "ORF type metagene profiles: {}".format(sample_name) is_first = True for is_chisq in chisq_values: if is_chisq: f = None rw = None else: f = fraction rw = reweighting_iterations orf_type_profile_base = filenames.get_orf_type_profile_base( config['riboseq_data'], sample_name, length=lengths, offset=offsets, is_unique=is_unique, note=out_note_str, fraction=f, reweighting_iterations=rw, is_chisq=is_chisq) it = itertools.product(ribo_utils.orf_types, strands) for orf_type, strand in it: orf_type_profile = filenames.get_orf_type_profile_image( orf_type_profile_base, orf_type, strand, args.image_type) msg = "Looking for image file: {}".format( orf_type_profile) logger.debug(msg) if os.path.exists(orf_type_profile): if is_first or (i % 4 == 0): latex.begin_figure(out) is_first = False i += 1 latex.write_graphics(out, orf_type_profile, height=0.23) if i % 4 == 0: latex.write_caption(out, caption) latex.end_figure(out) latex.clearpage(out) else: msg = "Could not find image: {}".format( orf_type_profile) logger.warning(msg) if (i > 0) and (i % 4 != 0): latex.write_caption(out, caption) latex.end_figure(out) #latex.clearpage(out) if i % 4 != 0: latex.clearpage(out) i = 0 for replicate_name in replicate_names: lengths = None offsets = None caption = "ORF type metagene profiles: {}".format( replicate_name) is_first = True for is_chisq in chisq_values: if is_chisq: f = None rw = None else: f = fraction rw = reweighting_iterations orf_type_profile_base = filenames.get_orf_type_profile_base( config['riboseq_data'], replicate_name, length=lengths, offset=offsets, is_unique=is_unique, note=out_note_str, fraction=f, reweighting_iterations=rw, is_chisq=is_chisq) it = itertools.product(ribo_utils.orf_types, strands) for orf_type, strand in it: orf_type_profile = filenames.get_orf_type_profile_image( orf_type_profile_base, orf_type, strand, args.image_type) if os.path.exists(orf_type_profile): if is_first or (i % 4 == 0): latex.begin_figure(out) is_first = False i += 1 latex.write_graphics(out, orf_type_profile, height=0.23) if i % 4 == 0: latex.write_caption(out, caption) latex.end_figure(out) latex.clearpage(out) else: msg = "Could not find image: {}".format( orf_type_profile) logger.debug(msg) if (i > 0) and (i % 4 != 0): latex.write_caption(out, caption) latex.end_figure(out) #latex.clearpage(out) if i % 4 != 0: latex.clearpage(out) latex.end_document(out) tex_filename = os.path.basename(tex_file) latex.compile(args.out, tex_filename)