'logParetoFront': 'yes', 'logBestIndividual': 'yes', 'logParetoFrontKeepAllGenerations': 'yes', 'logParetoFrontPeriod': 5, 'logParetoSize': 'yes', 'backup': 'no', 'trackAncestry': 'no', 'randomSeed': 0} arrowbotsDefaults = {'segments': segments, 'sensorAttachmentType': 'variable', 'simulationTime': 10., 'timeStep': 0.1, 'integrateError': 'false', 'writeTrajectories': 'false'} arrowbotInitialConditions = [[0]*segments]*segments # segmentsXsegments null matrix arrowbotTargetOrientations = [ [1 if i==j else 0 for i in range(segments)] for j in range(segments) ] # segmentsXsegments identity matrix # Optional definitions for pbsGridWalker that are constant involvedGitRepositories = mmr.involvedGitRepositories # dryRun = False ### Required pbsGridWalker definitions computationName = 'rateSizeSwipe_N' + str(segments) nonRSGrid = gr.LinGrid('probabilityOfMutatingClass0', 0.0, 0.2, 0, 5) * \ gr.Grid1d('initialPopulationType', ['sparse', 'random']) * \ gr.Grid1d('populationSize', [15, 25, 40, 60]) parametricGrid = nonRSGrid*numTrials + gr.Grid1dFromFile('randomSeed', mmr.randSeedFile, size=len(nonRSGrid)*numTrials) for par in parametricGrid.paramNames(): evsDefaults.pop(par) def prepareEnvironment(experiment): gccommons.prepareEnvironment(experiment) def runComputationAtPoint(worker, params): return gccommons.runComputationAtPoint(worker, params, evsDefaults, arrowbotsDefaults, arrowbotInitialConditions, arrowbotTargetOrientations)
'integrateError': 'false', 'writeTrajectories': 'false' } arrowbotInitialConditions = [[0] * segments ] * segments # segmentsXsegments null matrix arrowbotTargetOrientations = [[1 if i == j else 0 for i in range(segments)] for j in range(segments) ] # segmentsXsegments identity matrix # Optional definitions for pbsGridWalker that are constant involvedGitRepositories = mmr.involvedGitRepositories # dryRun = False ### Required pbsGridWalker definitions computationName = 'ccSwipe_N' + str(segments) nonRSGrid = gr.LinGrid('secondObjectiveProbability', 0.0, 0.05, 0, 20) * \ gr.Grid1d('initialPopulationType', ['sparse', 'random']) parametricGrid = nonRSGrid * numTrials + gr.Grid1dFromFile( 'randomSeed', mmr.randSeedFile, size=len(nonRSGrid) * numTrials) for par in parametricGrid.paramNames(): evsDefaults.pop(par) def prepareEnvironment(experiment): gccommons.prepareEnvironment(experiment) def runComputationAtPoint(worker, params): return gccommons.runComputationAtPoint(worker, params, evsDefaults, arrowbotsDefaults,
'governingNumHiddenNeurons': 12, 'governingMutModifyNeuron': 0.3, 'governingMutModifyConnection': 0.4, 'governingMutAddRemRatio': 1., 'behavioralNumHiddenNeurons': 6, 'behavioralMutModifyNeuron': 0.3, 'behavioralMutModifyConnection': 0.4, 'behavioralMutAddRemRatio': 1., 'weightScale': 1., 'populationSize': 100, 'genStopAfter': 5000, 'initialPopulationType': 'sparse', 'secondObjectiveProbability': 1.0, 'backup': 'yes', 'backupPeriod': 100, 'trackAncestry': 'no', 'logBestIndividual': 'yes', 'logPopulation': 'no', 'printGeneration': 'yes', 'printPopulation': 'no', 'printParetoFront': 'yes', 'logParetoFront': 'yes', 'logParetoFrontKeepAllGenerations': 'yes', 'logParetoFrontPeriod': 10, 'randomSeed': 42} ### Required pbsGridWalker definitions computationName = 'afpo_with_mutGoverning' nonRSGrid = gr.LinGrid('mutGoverning', 0.1, 0.2, 0, 4) parametricGrid = nonRSGrid * numTrials + gr.Grid1dFromFile( 'randomSeed', cr.randSeedFile, size=len(nonRSGrid) * numTrials) for par in parametricGrid.paramNames(): evsDefaults.pop(par) def prepareEnvironment(experiment): ce.prepareEnvironment(experiment) def runComputationAtPoint(worker, params): return ce.runComputationAtPoint(worker, params, evsDefaults,