def main(): args, cfg = parse_config() if args.launcher == 'none': dist_test = False else: args.batch_size, cfg.LOCAL_RANK = getattr(common_utils, 'init_dist_%s' % args.launcher)( args.batch_size, args.tcp_port, args.local_rank, backend='nccl' ) dist_test = True output_dir = cfg.ROOT_DIR / 'output' / cfg.EXP_GROUP_PATH / cfg.TAG / args.extra_tag output_dir.mkdir(parents=True, exist_ok=True) eval_output_dir = output_dir / 'eval' if not args.eval_all: num_list = re.findall(r'\d+', args.ckpt) if args.ckpt is not None else [] epoch_id = num_list[-1] if num_list.__len__() > 0 else 'no_number' eval_output_dir = eval_output_dir / ('epoch_%s' % epoch_id) / cfg.DATA_CONFIG.DATA_SPLIT['test'] else: eval_output_dir = eval_output_dir / 'eval_all_default' if args.eval_tag is not None: eval_output_dir = eval_output_dir / args.eval_tag eval_output_dir.mkdir(parents=True, exist_ok=True) log_file = eval_output_dir / ('log_eval_%s.txt' % datetime.datetime.now().strftime('%Y%m%d-%H%M%S')) logger = common_utils.create_logger(log_file, rank=cfg.LOCAL_RANK) # log to file logger.info('**********************Start logging**********************') gpu_list = os.environ['CUDA_VISIBLE_DEVICES'] if 'CUDA_VISIBLE_DEVICES' in os.environ.keys() else 'ALL' logger.info('CUDA_VISIBLE_DEVICES=%s' % gpu_list) if dist_test: total_gpus = dist.get_world_size() logger.info('total_batch_size: %d' % (total_gpus * args.batch_size)) for key, val in vars(args).items(): logger.info('{:16} {}'.format(key, val)) log_config_to_file(cfg, logger=logger) ckpt_dir = args.ckpt_dir if args.ckpt_dir is not None else output_dir / 'ckpt' test_set, test_loader, sampler = build_dataloader( dataset_cfg=cfg.DATA_CONFIG, class_names=cfg.CLASS_NAMES, batch_size=args.batch_size, dist=dist_test, workers=args.workers, logger=logger, training=False ) model = build_network(model_cfg=cfg.MODEL, num_class=len(cfg.CLASS_NAMES), dataset=test_set) with torch.no_grad(): if args.eval_all: repeat_eval_ckpt(model, test_loader, args, eval_output_dir, logger, ckpt_dir, dist_test=dist_test) else: eval_single_ckpt(model, test_loader, args, eval_output_dir, logger, epoch_id, dist_test=dist_test)
def main(): args, cfg = parse_config() if args.launcher == 'none': dist_train = False else: args.batch_size, cfg.LOCAL_RANK = getattr( common_utils, 'init_dist_%s' % args.launcher)(args.batch_size, args.tcp_port, args.local_rank, backend='nccl') dist_train = True if args.fix_random_seed: common_utils.set_random_seed(666) output_dir = cfg.ROOT_DIR / 'output' / cfg.EXP_GROUP_PATH / cfg.TAG / args.extra_tag ckpt_dir = output_dir / 'ckpt' output_dir.mkdir(parents=True, exist_ok=True) ckpt_dir.mkdir(parents=True, exist_ok=True) log_file = output_dir / ('log_train_%s.txt' % datetime.datetime.now().strftime('%Y%m%d-%H%M%S')) logger = common_utils.create_logger(log_file, rank=cfg.LOCAL_RANK) # log to file logger.info('**********************Start logging**********************') gpu_list = os.environ[ 'CUDA_VISIBLE_DEVICES'] if 'CUDA_VISIBLE_DEVICES' in os.environ.keys( ) else 'ALL' logger.info('CUDA_VISIBLE_DEVICES=%s' % gpu_list) if dist_train: total_gpus = dist.get_world_size() logger.info('total_batch_size: %d' % (total_gpus * args.batch_size)) for key, val in vars(args).items(): logger.info('{:16} {}'.format(key, val)) log_config_to_file(cfg, logger=logger) if cfg.LOCAL_RANK == 0: os.system('cp %s %s' % (args.cfg_file, output_dir)) tb_log = SummaryWriter( log_dir=str(output_dir / 'tensorboard')) if cfg.LOCAL_RANK == 0 else None # -----------------------create dataloader & network & optimizer--------------------------- train_set, train_loader, train_sampler = build_dataloader( dataset_cfg=cfg.DATA_CONFIG, class_names=cfg.CLASS_NAMES, batch_size=args.batch_size, dist=dist_train, workers=args.workers, logger=logger, training=True, merge_all_iters_to_one_epoch=args.merge_all_iters_to_one_epoch, total_epochs=args.epochs) model = build_network(model_cfg=cfg.MODEL, num_class=len(cfg.CLASS_NAMES), dataset=train_set) if args.sync_bn: model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model) model.cuda() optimizer = build_optimizer(model, cfg.OPTIMIZATION) # load checkpoint if it is possible start_epoch = it = 0 last_epoch = -1 if args.pretrained_model is not None: model.load_params_from_file(filename=args.pretrained_model, to_cpu=dist, logger=logger) if args.ckpt is not None: it, start_epoch = model.load_params_with_optimizer(args.ckpt, to_cpu=dist, optimizer=optimizer, logger=logger) last_epoch = start_epoch + 1 else: ckpt_list = glob.glob(str(ckpt_dir / '*checkpoint_epoch_*.pth')) if len(ckpt_list) > 0: ckpt_list.sort(key=os.path.getmtime) it, start_epoch = model.load_params_with_optimizer( ckpt_list[-1], to_cpu=dist, optimizer=optimizer, logger=logger) last_epoch = start_epoch + 1 model.train( ) # before wrap to DistributedDataParallel to support fixed some parameters if dist_train: model = nn.parallel.DistributedDataParallel( model, device_ids=[cfg.LOCAL_RANK % torch.cuda.device_count()]) logger.info(model) lr_scheduler, lr_warmup_scheduler = build_scheduler( optimizer, total_iters_each_epoch=len(train_loader), total_epochs=args.epochs, last_epoch=last_epoch, optim_cfg=cfg.OPTIMIZATION) # -----------------------start training--------------------------- logger.info( '**********************Start training %s/%s(%s)**********************' % (cfg.EXP_GROUP_PATH, cfg.TAG, args.extra_tag)) train_model(model, optimizer, train_loader, model_func=model_fn_decorator(), lr_scheduler=lr_scheduler, optim_cfg=cfg.OPTIMIZATION, start_epoch=start_epoch, total_epochs=args.epochs, start_iter=it, rank=cfg.LOCAL_RANK, tb_log=tb_log, ckpt_save_dir=ckpt_dir, train_sampler=train_sampler, lr_warmup_scheduler=lr_warmup_scheduler, ckpt_save_interval=args.ckpt_save_interval, max_ckpt_save_num=args.max_ckpt_save_num, merge_all_iters_to_one_epoch=args.merge_all_iters_to_one_epoch) logger.info( '**********************End training %s/%s(%s)**********************\n\n\n' % (cfg.EXP_GROUP_PATH, cfg.TAG, args.extra_tag)) logger.info( '**********************Start evaluation %s/%s(%s)**********************' % (cfg.EXP_GROUP_PATH, cfg.TAG, args.extra_tag)) test_set, test_loader, sampler = build_dataloader( dataset_cfg=cfg.DATA_CONFIG, class_names=cfg.CLASS_NAMES, batch_size=args.batch_size, dist=dist_train, workers=args.workers, logger=logger, training=False) eval_output_dir = output_dir / 'eval' / 'eval_with_train' eval_output_dir.mkdir(parents=True, exist_ok=True) args.start_epoch = max(args.epochs - 10, 0) # Only evaluate the last 10 epochs repeat_eval_ckpt(model.module if dist_train else model, test_loader, args, eval_output_dir, logger, ckpt_dir, dist_test=dist_train) logger.info( '**********************End evaluation %s/%s(%s)**********************' % (cfg.EXP_GROUP_PATH, cfg.TAG, args.extra_tag))
def main(): args, cfg = parse_config() if args.launcher == 'none': dist_test = False total_gpus = 1 else: total_gpus, cfg.LOCAL_RANK = getattr(common_utils, 'init_dist_%s' % args.launcher)(args.tcp_port, args.local_rank, backend='nccl') dist_test = True assert not dist_test and args.batch_size == 1 if args.batch_size is None: args.batch_size = cfg.OPTIMIZATION.BATCH_SIZE_PER_GPU else: assert args.batch_size % total_gpus == 0, 'Batch size should match the number of gpus' args.batch_size = args.batch_size // total_gpus output_dir = cfg.ROOT_DIR / 'output' / cfg.EXP_GROUP_PATH / cfg.TAG / args.extra_tag output_dir.mkdir(parents=True, exist_ok=True) eval_output_dir = Path('deploy/eval') if args.eval_tag is not None: eval_output_dir = eval_output_dir / args.eval_tag eval_output_dir.mkdir(parents=True, exist_ok=True) log_file = eval_output_dir / ( 'log_eval_%s.txt' % datetime.datetime.now().strftime('%Y%m%d-%H%M%S')) logger = common_utils.create_logger(log_file, rank=cfg.LOCAL_RANK) # log to file logger.info('**********************Start logging**********************') gpu_list = os.environ[ 'CUDA_VISIBLE_DEVICES'] if 'CUDA_VISIBLE_DEVICES' in os.environ.keys( ) else 'ALL' logger.info('CUDA_VISIBLE_DEVICES=%s' % gpu_list) if dist_test: logger.info('total_batch_size: %d' % (total_gpus * args.batch_size)) for key, val in vars(args).items(): logger.info('{:16} {}'.format(key, val)) log_config_to_file(cfg, logger=logger) test_set, test_loader, sampler = build_dataloader( dataset_cfg=cfg.DATA_CONFIG, class_names=cfg.CLASS_NAMES, batch_size=args.batch_size, dist=dist_test, workers=args.workers, logger=logger, training=False) if args.pruned_model is not None: tag = 'pruned_model' model = torch.load(args.pruned_model, map_location=torch.device('cpu')) elif args.pretrained_model is not None: tag = 'large_model' model = build_network(model_cfg=cfg.MODEL, num_class=len(cfg.CLASS_NAMES), dataset=test_set) model.load_params_from_file(filename=args.pretrained_model, logger=logger, to_cpu=dist_test) else: raise RuntimeError('error: please input weights.') model = model.cuda() model.eval() ExportModel = OnnxModelPointPillars(model) ExportModel.eval() ExportModel = ExportModel.cuda() points = np.fromfile(args.pcs_for_export, dtype=np.float32).reshape(-1, 4) points = torch.from_numpy(points).float().cuda() points = torch.autograd.Variable(points.contiguous()) valid = torch.Tensor([len(points)]).int().cuda() dummy_input = torch.zeros((25000, 4)).float().cuda() dummy_input[:len(points)] = points torch.onnx.export( ExportModel, (dummy_input, valid), "pointpillars_%s.onnx" % tag, verbose=True, training=False, operator_export_type=torch.onnx.OperatorExportTypes.ONNX_ATEN_FALLBACK, opset_version=10, input_names=['points', 'valid'], output_names=['pointpillars_output1', 'pointpillars_output2']) if args.eval_onnx_model: with torch.no_grad(): eval_single_ckpt_onnx(ExportModel, test_loader, args, eval_output_dir, logger, tag, dist_test=dist_test)
def main(): args, cfg = parge_config() if args.launcher == 'none': dist_train = False else: args.batch_size, cfg.LOCAL_RANK = getattr( common_utils, 'init_dist_%s' % args.launcher)(args.batch_size, args.tcp_port, args.local_rank, backend='nccl') dist_train = True if args.fix_random_seed: common_utils.set_random_seed(666) output_dir = cfg.ROOT_DIR / 'output' / cfg.TAG / args.extra_tag output_dir.mkdir(parents=True, exist_ok=True) ckpt_dir = output_dir / 'ckpt' ckpt_dir.mkdir(parents=True, exist_ok=True) log_file = output_dir / ('log_train_%s.txt' % datetime.datetime.now().strftime('%Y%m%d-%H%M%S')) logger = common_utils.create_logger(log_file, rank=cfg.LOCAL_RANK) # log to file logger.info('**********************Start logging**********************') gpu_list = os.environ[ 'CUDA_VISIBLE_DEVICES'] if 'CUDA_VISIBLE_DEVICES' in os.environ.keys( ) else 'ALL' logger.info('CUDA_VISIBLE_DEVICES=%s' % gpu_list) if dist_train: total_gpus = dist.get_world_size() logger.info('total_batch_size: %d' % (total_gpus * args.batch_size)) for key, val in vars(args).items(): logger.info('{:16} {}'.format(key, val)) log_config_to_file(cfg, logger=logger) tb_log = SummaryWriter( log_dir=str(output_dir / 'tensorboard')) if cfg.LOCAL_RANK == 0 else None if args.local_rank == 0: wandb.init(project='BEVSEG-PCDet', sync_tensorboard=True, name=args.extra_tag, config={ **vars(args), **cfg }) # -----------------------create dataloader & network & optimizer--------------------------- train_set, train_loader, train_sampler = build_dataloader( cfg.DATA_CONFIG.DATA_DIR, args.batch_size, dist_train, workers=args.workers, logger=logger, training=True) model = build_network(train_set) if args.sync_bn: model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model) model.cuda() optimizer = build_optimizer(model, cfg.MODEL.TRAIN.OPTIMIZATION) # load checkpoint if it is possible start_epoch = it = 0 last_epoch = -1 if args.pretrained_model is not None: model.load_params_from_file(filename=args.pretrained_model, to_cpu=dist, logger=logger) if args.ckpt is not None: it, start_epoch = model.load_params_with_optimizer(args.ckpt, to_cpu=dist, optimizer=optimizer, logger=logger) last_epoch = start_epoch + 1 else: ckpt_list = glob.glob(str(ckpt_dir / '*checkpoint_epoch_*.pth')) if len(ckpt_list) > 0: ckpt_list.sort(key=os.path.getmtime) it, start_epoch = model.load_params_with_optimizer( ckpt_list[-1], to_cpu=dist, optimizer=optimizer, logger=logger) last_epoch = start_epoch + 1 model.train( ) # before wrap to DistributedDataParallel to support fixed some parameters if dist_train: model = nn.parallel.DistributedDataParallel( model, device_ids=[cfg.LOCAL_RANK % torch.cuda.device_count()], find_unused_parameters= True # uncomment this line to debug unused params ) logger.info(model) lr_scheduler, lr_warmup_scheduler = build_scheduler( optimizer, total_iters_each_epoch=len(train_loader), total_epochs=args.epochs, last_epoch=last_epoch, optim_cfg=cfg.MODEL.TRAIN.OPTIMIZATION) # -----------------------start training--------------------------- logger.info( '**********************Start training %s(%s)**********************' % (cfg.TAG, args.extra_tag)) train_model(model, optimizer, train_loader, model_func=model_fn_decorator(), lr_scheduler=lr_scheduler, optim_cfg=cfg.MODEL.TRAIN.OPTIMIZATION, start_epoch=start_epoch, total_epochs=args.epochs, start_iter=it, rank=cfg.LOCAL_RANK, tb_log=tb_log, ckpt_save_dir=ckpt_dir, train_sampler=train_sampler, lr_warmup_scheduler=lr_warmup_scheduler, ckpt_save_interval=args.ckpt_save_interval, max_ckpt_save_num=args.max_ckpt_save_num) logger.info('**********************End training**********************') '''
def main(): args, cfg = parse_config() dist_test = False total_gpus = 1 if args.batch_size is None: args.batch_size = cfg.OPTIMIZATION.BATCH_SIZE_PER_GPU else: assert args.batch_size % total_gpus == 0, 'Batch size should match the number of gpus' args.batch_size = args.batch_size // total_gpus output_dir = cfg.ROOT_DIR / 'output' / cfg.EXP_GROUP_PATH / cfg.TAG / args.extra_tag output_dir.mkdir(parents=True, exist_ok=True) eval_output_dir = output_dir / 'eval' epoch_id = '110' eval_output_dir = eval_output_dir / ( 'epoch_%s' % epoch_id) / cfg.DATA_CONFIG.DATA_SPLIT['test'] eval_tag = 'play' eval_output_dir = eval_output_dir / eval_tag eval_output_dir.mkdir(parents=True, exist_ok=True) log_file = eval_output_dir / ( 'log_eval_%s.txt' % datetime.datetime.now().strftime('%Y%m%d-%H%M%S')) logger = common_utils.create_logger(log_file, rank=cfg.LOCAL_RANK) # log to file logger.info('**********************Start logging**********************') gpu_list = os.environ[ 'CUDA_VISIBLE_DEVICES'] if 'CUDA_VISIBLE_DEVICES' in os.environ.keys( ) else 'ALL' logger.info('CUDA_VISIBLE_DEVICES=%s' % gpu_list) if dist_test: logger.info('total_batch_size: %d' % (total_gpus * args.batch_size)) for key, val in vars(args).items(): logger.info('{:16} {}'.format(key, val)) log_config_to_file(cfg, logger=logger) test_set, test_loader, sampler = build_dataloader( dataset_cfg=cfg.DATA_CONFIG, class_names=cfg.CLASS_NAMES, batch_size=args.batch_size, dist=dist_test, workers=args.workers, logger=logger, training=False) model = build_network(model_cfg=cfg.MODEL, num_class=len(cfg.CLASS_NAMES), dataset=test_set) with torch.no_grad(): eval_single_ckpt(model, test_loader, args, output_dir, eval_output_dir, logger, epoch_id, dist_test=dist_test)
def main(): args, cfg = parse_config() if args.launcher == 'none': dist_test = False total_gpus = 1 torch.cuda.set_device(0) else: total_gpus, cfg.LOCAL_RANK = getattr(common_utils, 'init_dist_%s' % args.launcher)(args.tcp_port, args.local_rank, backend='nccl') dist_test = True if args.batch_size is None: args.batch_size = cfg.OPTIMIZATION.BATCH_SIZE_PER_GPU args.batch_size = 1 else: assert args.batch_size % total_gpus == 0, 'Batch size should match the number of gpus' args.batch_size = args.batch_size // total_gpus exp_group_path = cfg.EXP_GROUP_PATH.split('/')[-1] args.extra_tag = 'kittitracking' output_dir = cfg.ROOT_DIR / 'output' / exp_group_path / cfg.TAG / args.extra_tag output_dir.mkdir(parents=True, exist_ok=True) eval_output_dir = output_dir / 'eval' if not args.eval_all: num_list = re.findall(r'\d+', args.ckpt) if args.ckpt is not None else [] epoch_id = num_list[-1] if num_list.__len__() > 0 else 'no_number' eval_output_dir = eval_output_dir / ( 'epoch_%s' % epoch_id) / cfg.DATA_CONFIG.DATA_SPLIT['test'] else: eval_output_dir = eval_output_dir / 'eval_all_default' if args.eval_tag is not None: eval_output_dir = eval_output_dir / args.eval_tag eval_output_dir.mkdir(parents=True, exist_ok=True) log_file = eval_output_dir / ( 'log_eval_%s.txt' % datetime.datetime.now().strftime('%Y%m%d-%H%M%S')) logger = common_utils.create_logger(log_file, rank=cfg.LOCAL_RANK) # log to file logger.info('**********************Start logging**********************') gpu_list = os.environ[ 'CUDA_VISIBLE_DEVICES'] if 'CUDA_VISIBLE_DEVICES' in os.environ.keys( ) else 'ALL' logger.info('CUDA_VISIBLE_DEVICES=%s' % gpu_list) if dist_test: logger.info('total_batch_size: %d' % (total_gpus * args.batch_size)) for key, val in vars(args).items(): logger.info('{:16} {}'.format(key, val)) log_config_to_file(cfg, logger=logger) ckpt_dir = args.ckpt_dir if args.ckpt_dir is not None else output_dir / 'ckpt' test_set, test_loader, sampler = build_dataloader( dataset_cfg=cfg.DATA_CONFIG, class_names=cfg.CLASS_NAMES, batch_size=args.batch_size, dist=dist_test, workers=args.workers, logger=logger, training=False, use_color=cfg.USE_COLOR, use_rgb=cfg.USE_RGB, nbg=cfg.USE_NBG, raw=cfg.RAW) model = build_network(model_cfg=cfg.MODEL, num_class=len(cfg.CLASS_NAMES), dataset=test_set) #ckpt_dir = '/media/ddd/data2/3d_MOTS_Ex./Code/OpenPCDet-RandlaNet/output/kitti_models/Randla_pointrcnn_iou_128/default/ckpt/70-80/' with torch.no_grad(): if args.eval_all: repeat_eval_ckpt(model, test_loader, args, eval_output_dir, logger, ckpt_dir, dist_test=dist_test) else: eval_single_ckpt(model, test_loader, args, eval_output_dir, logger, epoch_id, dist_test=dist_test)
def main(): args, cfg = parse_config() if args.launcher == 'none': dist_train = False total_gpus = 1 else: total_gpus, cfg.LOCAL_RANK = getattr(common_utils, 'init_dist_%s' % args.launcher)(args.tcp_port, args.local_rank, backend='nccl') dist_train = True if args.batch_size is None: args.batch_size = cfg.OPTIMIZATION.BATCH_SIZE_PER_GPU else: assert args.batch_size % total_gpus == 0, 'Batch size should match the number of gpus' args.batch_size = args.batch_size // total_gpus args.epochs = cfg.OPTIMIZATION.NUM_EPOCHS if args.epochs is None else args.epochs if args.fix_random_seed: common_utils.set_random_seed(666) output_dir = cfg.ROOT_DIR / 'output' / cfg.EXP_GROUP_PATH / cfg.TAG / args.extra_tag ckpt_dir = output_dir / 'ckpt' output_dir.mkdir(parents=True, exist_ok=True) ckpt_dir.mkdir(parents=True, exist_ok=True) log_file = output_dir / ('log_train_%s.txt' % datetime.datetime.now().strftime('%Y%m%d-%H%M%S')) logger = common_utils.create_logger(log_file, rank=cfg.LOCAL_RANK) # log to file logger.info('**********************Start logging**********************') gpu_list = os.environ[ 'CUDA_VISIBLE_DEVICES'] if 'CUDA_VISIBLE_DEVICES' in os.environ.keys( ) else 'ALL' logger.info('CUDA_VISIBLE_DEVICES=%s' % gpu_list) if dist_train: logger.info('total_batch_size: %d' % (total_gpus * args.batch_size)) for key, val in vars(args).items(): logger.info('{:16} {}'.format(key, val)) log_config_to_file(cfg, logger=logger) if cfg.LOCAL_RANK == 0: os.system('cp %s %s' % (args.cfg_file, output_dir)) tb_log = SummaryWriter( log_dir=str(output_dir / 'tensorboard')) if cfg.LOCAL_RANK == 0 else None # -----------------------create dataloader & network & optimizer--------------------------- train_set, train_loader, train_sampler = build_dataloader( dataset_cfg=cfg.DATA_CONFIG, class_names=cfg.CLASS_NAMES, batch_size=args.batch_size, dist=dist_train, workers=args.workers, logger=logger, training=True, merge_all_iters_to_one_epoch=args.merge_all_iters_to_one_epoch, total_epochs=args.epochs) logger.info( '**********************Starting Inference on Pointpillars**********************' ) # Load model to GPU and deactivate gradients MODEL_PATH = '/home/triasamo/entire_model.pth' model_point = torch.load(MODEL_PATH) model_point.cuda() model_point.eval() start_time = time.time() all_predictions = [] with torch.no_grad(): for data_dict in tqdm(train_loader): load_data_to_gpu(data_dict) # feed point cloud into model predictions, _ = model_point( data_dict ) # returns a list of dictionaries (one for each frame fed into the model) for index, pred_dict in enumerate(predictions): # Sort out predictions into boxes, scores, labels and centers frame_id = data_dict['frame_id'][index] pred_boxes = pred_dict['pred_boxes'].cpu().numpy() pred_scores = pred_dict['pred_scores'].cpu().numpy() pred_labels = pred_dict['pred_labels'].cpu().numpy() pred_centers = pred_boxes[:, :3] frame_dict = { 'frame_id': frame_id, 'pred_centers': pred_centers, 'pred_scores': pred_scores, 'pred_labels': pred_labels } all_predictions.append(frame_dict) logger.info("Inferece of dataset executed in: %.2f sec" % (time.time() - start_time)) #for idx, data_dict in enumerate(dataloader_extra): # ic(data_dict.keys()) # dict_keys(['points', 'frame_id', 'gt_boxes', 'use_lead_xyz', 'voxels', 'voxel_coords', 'voxel_num_points', 'image_shape', 'batch_size']) logger.info( '**********************Finished Inference on Pointpillars**********************' ) model = build_network(model_cfg=cfg.MODEL, num_class=len(cfg.CLASS_NAMES), dataset=train_set) if args.sync_bn: model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model) model.cuda() optimizer = build_optimizer(model, cfg.OPTIMIZATION) # load checkpoint if it is possible start_epoch = it = 0 last_epoch = -1 if args.pretrained_model is not None: model.load_params_from_file(filename=args.pretrained_model, to_cpu=dist, logger=logger) if args.ckpt is not None: it, start_epoch = model.load_params_with_optimizer(args.ckpt, to_cpu=dist, optimizer=optimizer, logger=logger) last_epoch = start_epoch + 1 else: ckpt_list = glob.glob(str(ckpt_dir / '*checkpoint_epoch_*.pth')) if len(ckpt_list) > 0: ckpt_list.sort(key=os.path.getmtime) it, start_epoch = model.load_params_with_optimizer( ckpt_list[-1], to_cpu=dist, optimizer=optimizer, logger=logger) last_epoch = start_epoch + 1 model.train( ) # before wrap to DistributedDataParallel to support fixed some parameters if dist_train: model = nn.parallel.DistributedDataParallel( model, device_ids=[cfg.LOCAL_RANK % torch.cuda.device_count()]) logger.info(model) lr_scheduler, lr_warmup_scheduler = build_scheduler( optimizer, total_iters_each_epoch=len(train_loader), total_epochs=args.epochs, last_epoch=last_epoch, optim_cfg=cfg.OPTIMIZATION) # -----------------------start training--------------------------- logger.info( '**********************Start training %s/%s(%s)**********************' % (cfg.EXP_GROUP_PATH, cfg.TAG, args.extra_tag)) train_model(model, optimizer, train_loader, model_func=model_fn_decorator(), lr_scheduler=lr_scheduler, optim_cfg=cfg.OPTIMIZATION, start_epoch=start_epoch, total_epochs=args.epochs, start_iter=it, rank=cfg.LOCAL_RANK, tb_log=tb_log, ckpt_save_dir=ckpt_dir, train_sampler=train_sampler, lr_warmup_scheduler=lr_warmup_scheduler, ckpt_save_interval=args.ckpt_save_interval, max_ckpt_save_num=args.max_ckpt_save_num, merge_all_iters_to_one_epoch=args.merge_all_iters_to_one_epoch) logger.info( '**********************End training %s/%s(%s)**********************\n\n\n' % (cfg.EXP_GROUP_PATH, cfg.TAG, args.extra_tag)) logger.info('************** Saving Entire model **************\n\n\n') torch.save(model, '/home/triasamo/entire_model.pth') logger.info( '************** Saved model at /home/triasamo/entire_model.pth **************\n\n\n' ) test_set, test_loader, sampler = build_dataloader( dataset_cfg=cfg.DATA_CONFIG, class_names=cfg.CLASS_NAMES, batch_size=args.batch_size, dist=dist_train, workers=args.workers, logger=logger, training=False) eval_output_dir = output_dir / 'eval' / 'eval_with_train' eval_output_dir.mkdir(parents=True, exist_ok=True) args.start_epoch = max(args.epochs - 10, 0) # Only evaluate the last 10 epochs repeat_eval_ckpt(model.module if dist_train else model, test_loader, args, eval_output_dir, logger, ckpt_dir, dist_test=dist_train) logger.info( '**********************End evaluation %s/%s(%s)**********************' % (cfg.EXP_GROUP_PATH, cfg.TAG, args.extra_tag))
def main(): args, cfg = parse_config() print("epsilon", args.epsilon, "ord", args.norm, "iterations", args.iterations, "rec_type", args.rec_type, "pgd", args.pgd, "momentum", args.momentum, "ckpt", args.ckpt) # args.ckpt = ckpt if args.launcher == 'none': dist_test = False total_gpus = 1 else: total_gpus, cfg.LOCAL_RANK = getattr(common_utils, 'init_dist_%s' % args.launcher)(args.tcp_port, args.local_rank, backend='nccl') dist_test = True if args.batch_size is None: args.batch_size = cfg.OPTIMIZATION.BATCH_SIZE_PER_GPU else: assert args.batch_size % total_gpus == 0, 'Batch size should match the number of gpus' args.batch_size = args.batch_size // total_gpus output_dir = cfg.ROOT_DIR / 'output' / \ cfg.EXP_GROUP_PATH / cfg.TAG / args.extra_tag output_dir.mkdir(parents=True, exist_ok=True) eval_output_dir = output_dir / 'eval' if not args.eval_all: num_list = re.findall(r'\d+', args.ckpt) if args.ckpt is not None else [] epoch_id = num_list[-1] if num_list.__len__() > 0 else 'no_number' eval_output_dir = eval_output_dir / \ ('epoch_%s' % epoch_id) / cfg.DATA_CONFIG.DATA_SPLIT['test'] else: eval_output_dir = eval_output_dir / 'eval_all_default' if args.eval_tag is not None: eval_output_dir = eval_output_dir / args.eval_tag eval_output_dir.mkdir(parents=True, exist_ok=True) log_file = eval_output_dir / ( 'log_eval_%s.txt' % datetime.datetime.now().strftime('%Y%m%d-%H%M%S')) logger = common_utils.create_logger(log_file, rank=cfg.LOCAL_RANK) # log to file logger.info('**********************Start logging**********************') gpu_list = os.environ[ 'CUDA_VISIBLE_DEVICES'] if 'CUDA_VISIBLE_DEVICES' in os.environ.keys( ) else 'ALL' logger.info('CUDA_VISIBLE_DEVICES=%s' % gpu_list) if dist_test: logger.info('total_batch_size: %d' % (total_gpus * args.batch_size)) for key, val in vars(args).items(): logger.info('{:16} {}'.format(key, val)) log_config_to_file(cfg, logger=logger) ckpt_dir = args.ckpt_dir if args.ckpt_dir is not None else output_dir / 'ckpt' print(cfg.DATA_CONFIG.DATA_PATH) test_set, test_loader, sampler = build_dataloader( dataset_cfg=cfg.DATA_CONFIG, class_names=cfg.CLASS_NAMES, batch_size=args.batch_size, dist=dist_test, workers=args.workers, logger=logger, training=False) model = build_network(model_cfg=cfg.MODEL, num_class=len(cfg.CLASS_NAMES), dataset=test_set) if args.eval_all: repeat_eval_ckpt(model, test_loader, args, eval_output_dir, logger, ckpt_dir, dist_test=dist_test) else: eval_single_ckpt(model, test_loader, args, eval_output_dir, logger, args.epsilon, args.norm, args.iterations, args.rec_type, args.pgd, args.momentum, epoch_id, dist_test=dist_test)