示例#1
0
def extend(covfile, respfile, maskfile=None, **kwargs):

    alg = kwargs.pop('alg')
    if alg != 'hbr':
        print('Model extention is only possible for HBR models.')
        return
    elif (not 'model_path' in list(kwargs.keys())) or \
        (not 'output_path' in list(kwargs.keys())) or \
        (not 'trbefile' in list(kwargs.keys())) or \
        (not 'dummycovfile' in list(kwargs.keys()))or \
        (not 'dummybefile' in list(kwargs.keys())):
        print('InputError: Some mandatory arguments are missing.')
        return
    else:
        model_path = kwargs.pop('model_path')
        output_path = kwargs.pop('output_path')
        trbefile = kwargs.pop('trbefile')
        dummycovfile = kwargs.pop('dummycovfile')
        dummybefile = kwargs.pop('dummybefile')

    informative_prior = kwargs.pop('job_id', 'False') == 'True'
    generation_factor = int(kwargs.pop('generation_factor', '10'))
    job_id = kwargs.pop('job_id', None)
    batch_size = kwargs.pop('batch_size', None)
    if batch_size is not None:
        batch_size = int(batch_size)
        job_id = int(job_id) - 1

    if not os.path.isdir(output_path):
        os.mkdir(output_path)

    # load data
    print("Loading data ...")
    X = fileio.load(covfile)
    Y, maskvol = load_response_vars(respfile, maskfile)
    batch_effects_train = fileio.load(trbefile)
    X_dummy = fileio.load(dummycovfile)
    batch_effects_dummy = fileio.load(dummybefile)

    if len(Y.shape) == 1:
        Y = Y[:, np.newaxis]
    if len(X.shape) == 1:
        X = X[:, np.newaxis]
    if len(X_dummy.shape) == 1:
        X_dummy = X_dummy[:, np.newaxis]
    feature_num = Y.shape[1]

    # estimate the models for all subjects
    for i in range(feature_num):

        nm = norm_init(X)
        if batch_size is not None:  # when using nirmative_parallel
            print("Extending model ", job_id * batch_size + i)
            nm = nm.load(
                os.path.join(model_path,
                             'NM_0_' + str(job_id * batch_size + i) + '.pkl'))
        else:
            print("Extending model ", i + 1, "of", feature_num)
            nm = nm.load(os.path.join(model_path, 'NM_0_' + str(i) + '.pkl'))

        nm = nm.extend(X,
                       Y[:, i:i + 1],
                       batch_effects_train,
                       X_dummy,
                       batch_effects_dummy,
                       samples=generation_factor,
                       informative_prior=informative_prior)

        if batch_size is not None:
            nm.save(
                os.path.join(output_path,
                             'NM_0_' + str(job_id * batch_size + i) + '.pkl'))
        else:
            nm.save(os.path.join(output_path, 'NM_0_' + str(i) + '.pkl'))
示例#2
0
############################## Data Simulation ################################


X_train, Y_train, grp_id_train, X_test, Y_test, grp_id_test, coef = \
    simulate_data(simulation_method, n_samples, n_features, n_grps, 
                  working_dir=working_dir, plot=True, noise='hetero_gaussian')
    

################################# Methods Tests ###############################
    
    
for model_type in model_types:
    
    nm = norm_init(X_train, Y_train, alg='hbr', model_type=model_type,
                   random_intercept='True', random_slope='True', random_noise='True', 
                   hetero_noise='True', skewed_likelihood='False', order='3')
    nm.estimate(X_train, Y_train, trbefile=working_dir+'trbefile.pkl')
    yhat, ys2 = nm.predict(X_test, tsbefile=working_dir+'tsbefile.pkl')
    
    for i in range(n_features):
        sorted_idx = X_test[:,i].argsort(axis=0).squeeze()
        temp_X = X_test[sorted_idx,i]
        temp_Y = Y_test[sorted_idx,]
        temp_be = grp_id_test[sorted_idx,:].squeeze()
        temp_yhat = yhat[sorted_idx,]
        temp_s2 = ys2[sorted_idx,]
        
        plt.figure()
        for j in range(n_grps):
            plt.scatter(temp_X[temp_be==j,], temp_Y[temp_be==j,], 
示例#3
0
def predict(covfile, respfile=None, maskfile=None, **kwargs):
    '''
    Make predictions on the basis of a pre-estimated normative model 
    If only the covariates are specified then only predicted mean and variance 
    will be returned. If the test responses are also specified then quantities
    That depend on those will also be returned (Z scores and error metrics)

    Basic usage::

        predict(covfile, [extra_arguments])

    where the variables are defined below.

    :param covfile: test covariates used to predict the response variable
    :param respfile: test response variables for the normative model
    :param maskfile: mask used to apply to the data (nifti only)
    :param model_path: Directory containing the normative model and metadata
    :param output_path: Directory to store the results
    :param outputsuffix: Text string to add to the output filenames
    :param batch_size: batch size (for use with normative_parallel)
    :param job_id: batch id

    All outputs are written to disk in the same format as the input. These are:

    :outputs: * Yhat - predictive mean
              * S2 - predictive variance
              * Z - Z scores
    '''

    model_path = kwargs.pop('model_path', 'Models')
    job_id = kwargs.pop('job_id', None)
    batch_size = kwargs.pop('batch_size', None)
    output_path = kwargs.pop('output_path', '')
    outputsuffix = kwargs.pop('outputsuffix', '_predict')

    if respfile is not None and not os.path.exists(respfile):
        print("Response file does not exist. Only returning predictions")
        respfile = None
    if not os.path.isdir(model_path):
        print('Models directory does not exist!')
        return
    else:
        if os.path.exists(os.path.join(model_path, 'meta_data.md')):
            with open(os.path.join(model_path, 'meta_data.md'), 'rb') as file:
                meta_data = pickle.load(file)
            standardize = meta_data['standardize']
            mY = meta_data['mean_resp']
            sY = meta_data['std_resp']
            mX = meta_data['mean_cov']
            sX = meta_data['std_cov']
        else:
            standardize = False

    if batch_size is not None:
        batch_size = int(batch_size)
        job_id = int(job_id) - 1

    if (output_path != '') and (not os.path.isdir(output_path)):
        os.mkdir(output_path)

    # load data
    print("Loading data ...")
    X = fileio.load(covfile)
    if len(X.shape) == 1:
        X = X[:, np.newaxis]

    sample_num = X.shape[0]
    feature_num = len(glob.glob(os.path.join(model_path, 'NM_*.pkl')))

    Yhat = np.zeros([sample_num, feature_num])
    S2 = np.zeros([sample_num, feature_num])
    Z = np.zeros([sample_num, feature_num])

    if standardize:
        Xz = (X - mX[0]) / sX[0]
    else:
        Xz = X

    # estimate the models for all subjects
    for i in range(feature_num):
        print("Prediction by model ", i + 1, "of", feature_num)
        nm = norm_init(Xz)
        nm = nm.load(
            os.path.join(model_path, 'NM_' + str(0) + '_' + str(i) + '.pkl'))
        yhat, s2 = nm.predict(Xz, **kwargs)

        if standardize:
            Yhat[:, i] = yhat.squeeze() * sY[0][i] + mY[0][i]
            S2[:, i] = s2.squeeze() * sY[0][i]**2
        else:
            Yhat[:, i] = yhat.squeeze()
            S2[:, i] = s2.squeeze()

    if respfile is None:
        save_results(None, Yhat, S2, None, outputsuffix=outputsuffix)

        return (Yhat, S2)

    else:
        Y, maskvol = load_response_vars(respfile, maskfile)
        if len(Y.shape) == 1:
            Y = Y[:, np.newaxis]

        # warp the targets?
        if 'blr' in dir(nm):
            if nm.blr.warp is not None:
                warp_param = nm.blr.hyp[1:nm.blr.warp.get_n_params() + 1]
                Y = nm.blr.warp.f(Y, warp_param)

        Z = (Y - Yhat) / np.sqrt(S2)

        print("Evaluating the model ...")
        results = evaluate(Y,
                           Yhat,
                           S2=S2,
                           metrics=['Rho', 'RMSE', 'SMSE', 'EXPV'])

        print("Evaluations Writing outputs ...")
        save_results(respfile,
                     Yhat,
                     S2,
                     maskvol,
                     Z=Z,
                     outputsuffix=outputsuffix,
                     results=results,
                     save_path=output_path)

        return (Yhat, S2, Z)
示例#4
0
def transfer(covfile,
             respfile,
             testcov=None,
             testresp=None,
             maskfile=None,
             **kwargs):
    '''
    Transfer learning on the basis of a pre-estimated normative model by using 
    the posterior distribution over the parameters as an informed prior for 
    new data. currently only supported for HBR.
    
    Basic usage::

        transfer(covfile, respfile [extra_arguments])

    where the variables are defined below.

    :param covfile: test covariates used to predict the response variable
    :param respfile: test response variables for the normative model
    :param maskfile: mask used to apply to the data (nifti only)
    :param testcov: Test covariates
    :param testresp: Test responses
    :param model_path: Directory containing the normative model and metadata
    :param trbefile: Training batch effects file
    :param batch_size: batch size (for use with normative_parallel)
    :param job_id: batch id

    All outputs are written to disk in the same format as the input. These are:

    :outputs: * Yhat - predictive mean
              * S2 - predictive variance
              * Z - Z scores
    '''

    alg = kwargs.pop('alg')
    if alg != 'hbr':
        print('Model transferring is only possible for HBR models.')
        return
    elif (not 'model_path' in list(kwargs.keys())) or \
        (not 'output_path' in list(kwargs.keys())) or \
        (not 'trbefile' in list(kwargs.keys())):
        print('InputError: Some mandatory arguments are missing.')
        return
    else:
        model_path = kwargs.pop('model_path')
        output_path = kwargs.pop('output_path')
        trbefile = kwargs.pop('trbefile')
        batch_effects_train = fileio.load(trbefile)

    outputsuffix = kwargs.pop('outputsuffix', '_transfer')
    tsbefile = kwargs.pop('tsbefile', None)

    job_id = kwargs.pop('job_id', None)
    batch_size = kwargs.pop('batch_size', None)
    if batch_size is not None:
        batch_size = int(batch_size)
        job_id = int(job_id) - 1

    if not os.path.isdir(output_path):
        os.mkdir(output_path)

    # load data
    print("Loading data ...")
    X = fileio.load(covfile)
    Y, maskvol = load_response_vars(respfile, maskfile)
    if len(Y.shape) == 1:
        Y = Y[:, np.newaxis]
    if len(X.shape) == 1:
        X = X[:, np.newaxis]
    feature_num = Y.shape[1]
    mY = np.mean(Y, axis=0)
    sY = np.std(Y, axis=0)

    if testcov is not None:
        # we have a separate test dataset
        Xte = fileio.load(testcov)
        if len(Xte.shape) == 1:
            Xte = Xte[:, np.newaxis]
        ts_sample_num = Xte.shape[0]
        if testresp is not None:
            Yte, testmask = load_response_vars(testresp, maskfile)
            if len(Yte.shape) == 1:
                Yte = Yte[:, np.newaxis]
        else:
            Yte = np.zeros([ts_sample_num, feature_num])

        if tsbefile is not None:
            batch_effects_test = fileio.load(tsbefile)
        else:
            batch_effects_test = np.zeros([Xte.shape[0], 2])

    Yhat = np.zeros([ts_sample_num, feature_num])
    S2 = np.zeros([ts_sample_num, feature_num])
    Z = np.zeros([ts_sample_num, feature_num])

    # estimate the models for all subjects
    for i in range(feature_num):

        nm = norm_init(X)
        if batch_size is not None:  # when using normative_parallel
            print("Transferting model ", job_id * batch_size + i)
            nm = nm.load(
                os.path.join(model_path,
                             'NM_0_' + str(job_id * batch_size + i) + '.pkl'))
        else:
            print("Transferting model ", i + 1, "of", feature_num)
            nm = nm.load(os.path.join(model_path, 'NM_0_' + str(i) + '.pkl'))

        nm = nm.estimate_on_new_sites(X, Y[:, i], batch_effects_train)
        if batch_size is not None:
            nm.save(
                os.path.join(output_path,
                             'NM_0_' + str(job_id * batch_size + i) + '.pkl'))
        else:
            nm.save(os.path.join(output_path, 'NM_0_' + str(i) + '.pkl'))

        if testcov is not None:
            yhat, s2 = nm.predict_on_new_sites(Xte, batch_effects_test)
            Yhat[:, i] = yhat.squeeze()
            S2[:, i] = s2.squeeze()

    if testresp is None:
        save_results(respfile, Yhat, S2, maskvol, outputsuffix=outputsuffix)
        return (Yhat, S2)
    else:
        Z = (Yte - Yhat) / np.sqrt(S2)

        print("Evaluating the model ...")
        results = evaluate(Yte, Yhat, S2=S2, mY=mY, sY=sY)

        save_results(respfile,
                     Yhat,
                     S2,
                     maskvol,
                     Z=Z,
                     results=results,
                     outputsuffix=outputsuffix)

        return (Yhat, S2, Z)
示例#5
0
def estimate(covfile, respfile, **kwargs):
    """ Estimate a normative model

    This will estimate a model in one of two settings according to theparticular parameters specified (see below)
        
    * under k-fold cross-validation.
      requires respfile, covfile and cvfolds>=2
    * estimating a training dataset then applying to a second test dataset.
      requires respfile, covfile, testcov and testresp.
    * estimating on a training dataset ouput of forward maps mean and se. 
      requires respfile, covfile and testcov

    The models are estimated on the basis of data stored on disk in ascii or
    neuroimaging data formats (nifti or cifti). Ascii data should be in
    tab or space delimited format with the number of subjects in rows and the
    number of variables in columns. Neuroimaging data will be reshaped
    into the appropriate format

    Basic usage::

        estimate(covfile, respfile, [extra_arguments])

    where the variables are defined below. Note that either the cfolds
    parameter or (testcov, testresp) should be specified, but not both.

    :param respfile: response variables for the normative model
    :param covfile: covariates used to predict the response variable
    :param maskfile: mask used to apply to the data (nifti only)
    :param cvfolds: Number of cross-validation folds
    :param testcov: Test covariates
    :param testresp: Test responses
    :param alg: Algorithm for normative model
    :param configparam: Parameters controlling the estimation algorithm
    :param saveoutput: Save the output to disk? Otherwise returned as arrays
    :param outputsuffix: Text string to add to the output filenames

    All outputs are written to disk in the same format as the input. These are:

    :outputs: * yhat - predictive mean
              * ys2 - predictive variance
              * nm - normative model
              * Z - deviance scores
              * Rho - Pearson correlation between true and predicted responses
              * pRho - parametric p-value for this correlation
              * rmse - root mean squared error between true/predicted responses
              * smse - standardised mean squared error

    The outputsuffix may be useful to estimate multiple normative models in the
    same directory (e.g. for custom cross-validation schemes)
    """

    # parse keyword arguments
    maskfile = kwargs.pop('maskfile', None)
    cvfolds = kwargs.pop('cvfolds', None)
    testcov = kwargs.pop('testcov', None)
    testresp = kwargs.pop('testresp', None)
    alg = kwargs.pop('alg', 'gpr')
    outputsuffix = kwargs.pop('outputsuffix', '_estimate')
    standardize = kwargs.pop('standardize', 'True')
    warp = kwargs.get('warp', None)

    # convert from strings if necessary
    if type(standardize) is str:
        standardize = standardize == 'True'
    saveoutput = kwargs.pop('saveoutput', 'True')
    if type(saveoutput) is str:
        saveoutput = saveoutput == 'True'
    savemodel = kwargs.pop('savemodel', 'False')
    if type(savemodel) is str:
        savemodel = savemodel == 'True'

    if savemodel and not os.path.isdir('Models'):
        os.mkdir('Models')

    # load data
    print("Processing data in " + respfile)
    X = fileio.load(covfile)
    Y, maskvol = load_response_vars(respfile, maskfile)
    if len(Y.shape) == 1:
        Y = Y[:, np.newaxis]
    if len(X.shape) == 1:
        X = X[:, np.newaxis]
    Nmod = Y.shape[1]

    if (testcov is not None) and (cvfolds is
                                  None):  # we have a separate test dataset

        run_cv = False
        cvfolds = 1
        Xte = fileio.load(testcov)
        if len(Xte.shape) == 1:
            Xte = Xte[:, np.newaxis]
        if testresp is not None:
            Yte, testmask = load_response_vars(testresp, maskfile)
            if len(Yte.shape) == 1:
                Yte = Yte[:, np.newaxis]
        else:
            sub_te = Xte.shape[0]
            Yte = np.zeros([sub_te, Nmod])

        # treat as a single train-test split
        testids = range(X.shape[0], X.shape[0] + Xte.shape[0])
        splits = CustomCV((range(0, X.shape[0]), ), (testids, ))

        Y = np.concatenate((Y, Yte), axis=0)
        X = np.concatenate((X, Xte), axis=0)

    else:
        run_cv = True
        # we are running under cross-validation
        splits = KFold(n_splits=cvfolds)
        testids = range(0, X.shape[0])

    # find and remove bad variables from the response variables
    # note: the covariates are assumed to have already been checked
    nz = np.where(
        np.bitwise_and(np.isfinite(Y).any(axis=0),
                       np.var(Y, axis=0) != 0))[0]

    # run cross-validation loop
    Yhat = np.zeros_like(Y)
    S2 = np.zeros_like(Y)
    Z = np.zeros_like(Y)
    nlZ = np.zeros((Nmod, cvfolds))

    mean_resp = []
    std_resp = []
    mean_cov = []
    std_cov = []

    if warp is not None:
        Ywarp = np.zeros_like(Yhat)
        mean_resp_warp = [np.zeros(Y.shape[1]) for s in range(splits.n_splits)]
        std_resp_warp = [np.zeros(Y.shape[1]) for s in range(splits.n_splits)]

    for idx in enumerate(splits.split(X)):

        fold = idx[0]
        tr = idx[1][0]
        te = idx[1][1]

        # standardize responses and covariates, ignoring invalid entries
        iy, jy = np.ix_(tr, nz)
        mY = np.mean(Y[iy, jy], axis=0)
        sY = np.std(Y[iy, jy], axis=0)
        mean_resp.append(mY)
        std_resp.append(sY)
        if standardize:
            Yz = np.zeros_like(Y)
            Yz[:, nz] = (Y[:, nz] - mY) / sY
            mX = np.mean(X[tr, :], axis=0)
            sX = np.std(X[tr, :], axis=0)
            Xz = (X - mX) / sX
            mean_cov.append(mX)
            std_cov.append(sX)
        else:
            Yz = Y
            Xz = X

        # estimate the models for all subjects
        for i in range(0, len(nz)):
            print("Estimating model ", i + 1, "of", len(nz))
            nm = norm_init(Xz[tr, :], Yz[tr, nz[i]], alg=alg, **kwargs)
            try:
                nm = nm.estimate(Xz[tr, :], Yz[tr, nz[i]], **kwargs)

                yhat, s2 = nm.predict(Xz[te, :], Xz[tr, :], Yz[tr, nz[i]],
                                      **kwargs)

                if savemodel:
                    nm.save('Models/NM_' + str(fold) + '_' + str(nz[i]) +
                            '.pkl')

                if standardize:
                    Yhat[te, nz[i]] = yhat * sY[i] + mY[i]
                    S2[te, nz[i]] = s2 * sY[i]**2
                else:
                    Yhat[te, nz[i]] = yhat
                    S2[te, nz[i]] = s2

                nlZ[nz[i], fold] = nm.neg_log_lik

                if (run_cv or testresp is not None):
                    # warp the labels?
                    if warp is not None:
                        warp_param = nm.blr.hyp[1:nm.blr.warp.get_n_params() +
                                                1]
                        Ywarp[te,
                              nz[i]] = nm.blr.warp.f(Y[te, nz[i]], warp_param)
                        Ytest = Ywarp[te, nz[i]]

                        # Save warped mean of the training data (for MSLL)
                        yw = nm.blr.warp.f(Y[tr, nz[i]], warp_param)
                        mean_resp_warp[fold][i] = np.mean(yw)
                        std_resp_warp[fold][i] = np.std(yw)
                    else:
                        Ytest = Y[te, nz[i]]

                    Z[te, nz[i]] = (Ytest - Yhat[te, nz[i]]) / \
                                    np.sqrt(S2[te, nz[i]])

            except Exception as e:
                exc_type, exc_obj, exc_tb = sys.exc_info()
                fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)[1]
                print("Model ", i + 1, "of", len(nz),
                      "FAILED!..skipping and writing NaN to outputs")
                print("Exception:")
                print(e)
                print(exc_type, fname, exc_tb.tb_lineno)

                Yhat[te, nz[i]] = float('nan')
                S2[te, nz[i]] = float('nan')
                nlZ[nz[i], fold] = float('nan')
                if testcov is None:
                    Z[te, nz[i]] = float('nan')
                else:
                    if testresp is not None:
                        Z[te, nz[i]] = float('nan')

    if savemodel:
        print('Saving model meta-data...')
        with open('Models/meta_data.md', 'wb') as file:
            pickle.dump(
                {
                    'valid_voxels': nz,
                    'fold_num': cvfolds,
                    'mean_resp': mean_resp,
                    'std_resp': std_resp,
                    'mean_cov': mean_cov,
                    'std_cov': std_cov,
                    'regressor': alg,
                    'standardize': standardize
                }, file)

    # compute performance metrics
    if (run_cv or testresp is not None):
        print("Evaluating the model ...")
        if warp is None:
            results = evaluate(Y[testids, :],
                               Yhat[testids, :],
                               S2=S2[testids, :],
                               mY=mean_resp[0],
                               sY=std_resp[0])
        else:
            results = evaluate(Ywarp[testids, :],
                               Yhat[testids, :],
                               S2=S2[testids, :],
                               mY=mean_resp_warp[0],
                               sY=std_resp_warp[0])

    # Set writing options
    if saveoutput:
        if (run_cv or testresp is not None):
            save_results(respfile,
                         Yhat[testids, :],
                         S2[testids, :],
                         maskvol,
                         Z=Z[testids, :],
                         results=results,
                         outputsuffix=outputsuffix)

        else:
            save_results(respfile,
                         Yhat[testids, :],
                         S2[testids, :],
                         maskvol,
                         outputsuffix=outputsuffix)

    else:
        if (run_cv or testresp is not None):
            output = (Yhat[testids, :], S2[testids, :], nm, Z[testids, :],
                      results)
        else:
            output = (Yhat[testids, :], S2[testids, :], nm)

        return output
示例#6
0
def fit(covfile, respfile, **kwargs):

    # parse keyword arguments
    maskfile = kwargs.pop('maskfile', None)
    alg = kwargs.pop('alg', 'gpr')
    savemodel = kwargs.pop('savemodel', 'True') == 'True'
    standardize = kwargs.pop('standardize', True)

    if savemodel and not os.path.isdir('Models'):
        os.mkdir('Models')

    # load data
    print("Processing data in " + respfile)
    X = fileio.load(covfile)
    Y, maskvol = load_response_vars(respfile, maskfile)
    if len(Y.shape) == 1:
        Y = Y[:, np.newaxis]
    if len(X.shape) == 1:
        X = X[:, np.newaxis]

    # find and remove bad variables from the response variables
    # note: the covariates are assumed to have already been checked
    nz = np.where(
        np.bitwise_and(np.isfinite(Y).any(axis=0),
                       np.var(Y, axis=0) != 0))[0]

    mean_resp = []
    std_resp = []
    mean_cov = []
    std_cov = []

    # standardize responses and covariates, ignoring invalid entries
    mY = np.mean(Y[:, nz], axis=0)
    sY = np.std(Y[:, nz], axis=0)
    mean_resp.append(mY)
    std_resp.append(sY)
    if standardize:
        Yz = np.zeros_like(Y)
        Yz[:, nz] = (Y[:, nz] - mY) / sY
        mX = np.mean(X, axis=0)
        sX = np.std(X, axis=0)
        Xz = (X - mX) / sX
        mean_resp.append(mY)
        std_resp.append(sY)
        mean_cov.append(mX)
        std_cov.append(sX)
    else:
        Yz = Y
        Xz = X

    # estimate the models for all subjects
    for i in range(0, len(nz)):
        print("Estimating model ", i + 1, "of", len(nz))
        nm = norm_init(Xz, Yz[:, nz[i]], alg=alg, **kwargs)
        nm = nm.estimate(Xz, Yz[:, nz[i]], **kwargs)

        if savemodel:
            nm.save('Models/NM_' + str(0) + '_' + str(nz[i]) + '.pkl')

    if savemodel:
        print('Saving model meta-data...')
        with open('Models/meta_data.md', 'wb') as file:
            pickle.dump(
                {
                    'valid_voxels': nz,
                    'mean_resp': mean_resp,
                    'std_resp': std_resp,
                    'mean_cov': mean_cov,
                    'std_cov': std_cov,
                    'regressor': alg,
                    'standardize': standardize
                }, file)

    return nm
示例#7
0
X_train = np.random.rand(sample_num,1) * 5 - 2
Y_train = - 2 * X_train**2 + 2 * X_train + 1 + X_train * np.random.randn(sample_num,1)
X_test = np.random.rand(sample_num,1) * 5 - 2
Y_test = - 2 * X_test**2 + 2 * X_test + 1 + X_test * np.random.randn(sample_num,1)

configparam = dict()
configparam['batch_size'] = 10
configparam['epochs'] = 100
configparam['m'] = 200
configparam['hidden_neuron_num'] = 10 
configparam['r_dim'] = 5 
configparam['z_dim'] = 3 
configparam['nv'] = 0.01 
configparam['device'] = torch.device('cpu')
with open('NP_configs.pkl', 'wb') as file:
    pickle.dump(configparam,file)
    
nm = norm_init(X_train, Y_train, alg='np', configparam='NP_configs.pkl')
nm.estimate(X_train, Y_train)
y_hat, ys2 = nm.predict(X_test)

fig = plt.figure()
ax1 = fig.add_subplot(111)
ax1.scatter(X_test,Y_test, label='Test Data')
ax1.errorbar(X_test, y_hat, yerr=1.96 * np.sqrt(ys2).squeeze(), fmt='.',c='y',alpha=0.2, label='95% Prediction Intervals')
ax1.scatter(X_test, y_hat, c='r', label='Prediction')
ax1.set_title('Estimated Function')
ax1.set_xlabel('X')
ax1.set_ylabel('Y')
ax1.legend()
示例#8
0
def predict(covfile, respfile, maskfile=None, **kwargs):
    '''
    Make predictions on the basis of a pre-estimated normative model 
    If only the covariates are specified then only predicted mean and variance 
    will be returned. If the test responses are also specified then quantities
    That depend on those will also be returned (Z scores and error metrics)

    Basic usage::

        predict(covfile, [extra_arguments])

    where the variables are defined below.

    :param covfile: test covariates used to predict the response variable
    :param respfile: test response variables for the normative model
    :param maskfile: mask used to apply to the data (nifti only)
    :param model_path: Directory containing the normative model and metadata.
     When using parallel prediction, do not pass the model path. It will be 
     automatically decided.
    :param outputsuffix: Text string to add to the output filenames
    :param batch_size: batch size (for use with normative_parallel)
    :param job_id: batch id

    All outputs are written to disk in the same format as the input. These are:

    :outputs: * Yhat - predictive mean
              * S2 - predictive variance
              * Z - Z scores
    '''
    
    
    model_path = kwargs.pop('model_path', 'Models')
    job_id = kwargs.pop('job_id', None)
    batch_size = kwargs.pop('batch_size', None)
    outputsuffix = kwargs.pop('outputsuffix', '_predict')
    inputsuffix = kwargs.pop('inputsuffix', '_estimate')
    alg = kwargs.pop('alg')
        
    if respfile is not None and not os.path.exists(respfile):
        print("Response file does not exist. Only returning predictions")
        respfile = None
    if not os.path.isdir(model_path):
        print('Models directory does not exist!')
        return
    else:
        if os.path.exists(os.path.join(model_path, 'meta_data.md')):
            with open(os.path.join(model_path, 'meta_data.md'), 'rb') as file:
                meta_data = pickle.load(file)
            inscaler = meta_data['inscaler']
            outscaler = meta_data['outscaler']
            mY = meta_data['mean_resp']
            sY = meta_data['std_resp']
            scaler_cov = meta_data['scaler_cov']
            scaler_resp = meta_data['scaler_resp']
            meta_data = True
        else:
            print("No meta-data file is found!")
            inscaler = 'None'
            outscaler = 'None'
            meta_data = False

    if batch_size is not None:
        batch_size = int(batch_size)
        job_id = int(job_id) - 1

    
    # load data
    print("Loading data ...")
    X = fileio.load(covfile)
    if len(X.shape) == 1:
        X = X[:, np.newaxis]
    
    sample_num = X.shape[0]
    feature_num = len(glob.glob(os.path.join(model_path, 'NM_*' + inputsuffix + 
                                             '.pkl')))

    Yhat = np.zeros([sample_num, feature_num])
    S2 = np.zeros([sample_num, feature_num])
    Z = np.zeros([sample_num, feature_num])
    
    if inscaler in ['standardize', 'minmax', 'robminmax']:
        Xz = scaler_cov[0].transform(X)
    else:
        Xz = X
    
    # estimate the models for all subjects
    for i in range(feature_num):
        print("Prediction by model ", i+1, "of", feature_num)      
        nm = norm_init(Xz)
        nm = nm.load(os.path.join(model_path, 'NM_' + str(0) + '_' + 
                                  str(i) + inputsuffix + '.pkl'))
        if (alg!='hbr' or nm.configs['transferred']==False):
            yhat, s2 = nm.predict(Xz, **kwargs)
        else:
            tsbefile = kwargs.pop('tsbefile') 
            batch_effects_test = fileio.load(tsbefile)
            yhat, s2 = nm.predict_on_new_sites(Xz, batch_effects_test)
        
        if outscaler == 'standardize': 
            Yhat[:, i] = scaler_resp[0].inverse_transform(yhat, index=i)
            S2[:, i] = s2.squeeze() * sY[0][i]**2
        elif outscaler in ['minmax', 'robminmax']:
            Yhat[:, i] = scaler_resp[0].inverse_transform(yhat, index=i)
            S2[:, i] = s2 * (scaler_resp[0].max[i] - scaler_resp[0].min[i])**2
        else:
            Yhat[:, i] = yhat.squeeze()
            S2[:, i] = s2.squeeze()

    if respfile is None:
        save_results(None, Yhat, S2, None, outputsuffix=outputsuffix)
        
        return (Yhat, S2)
    
    else:
        Y, maskvol = load_response_vars(respfile, maskfile)
        if len(Y.shape) == 1:
            Y = Y[:, np.newaxis]
        
        # warp the targets?
        if 'blr' in dir(nm):
            if nm.blr.warp is not None:
                warp_param = nm.blr.hyp[1:nm.blr.warp.get_n_params()+1] 
                Y = nm.blr.warp.f(Y, warp_param)
        
        Z = (Y - Yhat) / np.sqrt(S2)
        
        print("Evaluating the model ...")
        if meta_data:
            results = evaluate(Y, Yhat, S2=S2, mY=mY[0], sY=sY[0])
        else:    
            results = evaluate(Y, Yhat, S2=S2, 
                           metrics = ['Rho', 'RMSE', 'SMSE', 'EXPV'])
        
        print("Evaluations Writing outputs ...")
        save_results(respfile, Yhat, S2, maskvol, Z=Z, 
                     outputsuffix=outputsuffix, results=results)
        
        return (Yhat, S2, Z)
示例#9
0
def fit(covfile, respfile, **kwargs):
    
    # parse keyword arguments 
    maskfile = kwargs.pop('maskfile',None)
    alg = kwargs.pop('alg','gpr')
    savemodel = kwargs.pop('savemodel','True')=='True'
    outputsuffix = kwargs.pop('outputsuffix','_fit')
    inscaler = kwargs.pop('inscaler','None')
    outscaler = kwargs.pop('outscaler','None')
    
    if savemodel and not os.path.isdir('Models'):
        os.mkdir('Models')

    # load data
    print("Processing data in " + respfile)
    X = fileio.load(covfile)
    Y, maskvol = load_response_vars(respfile, maskfile)
    if len(Y.shape) == 1:
        Y = Y[:, np.newaxis]
    if len(X.shape) == 1:
        X = X[:, np.newaxis]
    
    # find and remove bad variables from the response variables
    # note: the covariates are assumed to have already been checked
    nz = np.where(np.bitwise_and(np.isfinite(Y).any(axis=0),
                                 np.var(Y, axis=0) != 0))[0]        
    
    scaler_resp = []
    scaler_cov = []
    mean_resp = [] # this is just for computing MSLL
    std_resp = []   # this is just for computing MSLL
    
    # standardize responses and covariates, ignoring invalid entries
    mY = np.mean(Y[:, nz], axis=0)
    sY = np.std(Y[:, nz], axis=0)
    mean_resp.append(mY)
    std_resp.append(sY)
    
    if inscaler in ['standardize', 'minmax', 'robminmax']:
        X_scaler = scaler(inscaler)
        Xz = X_scaler.fit_transform(X)
        scaler_cov.append(X_scaler)
    else:
        Xz = X
        
    if outscaler in ['standardize', 'minmax', 'robminmax']:
        Yz = np.zeros_like(Y)
        Y_scaler = scaler(outscaler)
        Yz[:, nz] = Y_scaler.fit_transform(Y[:, nz])
        scaler_resp.append(Y_scaler)
    else:
        Yz = Y

    # estimate the models for all subjects
    for i in range(0, len(nz)):  
        print("Estimating model ", i+1, "of", len(nz))
        nm = norm_init(Xz, Yz[:, nz[i]], alg=alg, **kwargs)
        nm = nm.estimate(Xz, Yz[:, nz[i]], **kwargs)     
            
        if savemodel:
            nm.save('Models/NM_' + str(0) + '_' + str(nz[i]) + outputsuffix + 
                    '.pkl' )

    if savemodel:
        print('Saving model meta-data...')
        with open('Models/meta_data.md', 'wb') as file:
            pickle.dump({'valid_voxels':nz,
                         'mean_resp':mean_resp, 'std_resp':std_resp, 
                         'scaler_cov':scaler_cov, 'scaler_resp':scaler_resp, 
                         'regressor':alg, 'inscaler':inscaler,
                         'outscaler':outscaler}, file, protocol=PICKLE_PROTOCOL)
        
    return nm
示例#10
0
def transfer(covfile,
             respfile,
             testcov=None,
             testresp=None,
             maskfile=None,
             **kwargs):

    alg = kwargs.pop('alg')
    if alg != 'hbr':
        print('Model transferring is only possible for HBR models.')
        return
    elif (not 'model_path' in list(kwargs.keys())) or \
        (not 'output_path' in list(kwargs.keys())) or \
        (not 'trbefile' in list(kwargs.keys())):
        print('InputError: Some mandatory arguments are missing.')
        return
    else:
        model_path = kwargs.pop('model_path')
        output_path = kwargs.pop('output_path')
        trbefile = kwargs.pop('trbefile')
        batch_effects_train = fileio.load(trbefile)

    outputsuffix = kwargs.pop('outputsuffix', '_transfer')
    tsbefile = kwargs.pop('tsbefile', None)

    job_id = kwargs.pop('job_id', None)
    batch_size = kwargs.pop('batch_size', None)
    if batch_size is not None:
        batch_size = int(batch_size)
        job_id = int(job_id) - 1

    if not os.path.isdir(output_path):
        os.mkdir(output_path)

    # load data
    print("Loading data ...")
    X = fileio.load(covfile)
    Y, maskvol = load_response_vars(respfile, maskfile)
    if len(Y.shape) == 1:
        Y = Y[:, np.newaxis]
    if len(X.shape) == 1:
        X = X[:, np.newaxis]
    feature_num = Y.shape[1]
    mY = np.mean(Y, axis=0)
    sY = np.std(Y, axis=0)

    if testcov is not None:
        # we have a separate test dataset
        Xte = fileio.load(testcov)
        if len(Xte.shape) == 1:
            Xte = Xte[:, np.newaxis]
        ts_sample_num = Xte.shape[0]
        if testresp is not None:
            Yte, testmask = load_response_vars(testresp, maskfile)
            if len(Yte.shape) == 1:
                Yte = Yte[:, np.newaxis]
        else:
            Yte = np.zeros([ts_sample_num, feature_num])

        if tsbefile is not None:
            batch_effects_test = fileio.load(tsbefile)
        else:
            batch_effects_test = np.zeros([Xte.shape[0], 2])

    Yhat = np.zeros([ts_sample_num, feature_num])
    S2 = np.zeros([ts_sample_num, feature_num])
    Z = np.zeros([ts_sample_num, feature_num])

    # estimate the models for all subjects
    for i in range(feature_num):

        nm = norm_init(X)
        if batch_size is not None:  # when using normative_parallel
            print("Transferting model ", job_id * batch_size + i)
            nm = nm.load(
                os.path.join(model_path,
                             'NM_0_' + str(job_id * batch_size + i) + '.pkl'))
        else:
            print("Transferting model ", i + 1, "of", feature_num)
            nm = nm.load(os.path.join(model_path, 'NM_0_' + str(i) + '.pkl'))

        nm = nm.estimate_on_new_sites(X, Y[:, i], batch_effects_train)
        if batch_size is not None:
            nm.save(
                os.path.join(output_path,
                             'NM_0_' + str(job_id * batch_size + i) + '.pkl'))
        else:
            nm.save(os.path.join(output_path, 'NM_0_' + str(i) + '.pkl'))

        if testcov is not None:
            yhat, s2 = nm.predict_on_new_sites(Xte, batch_effects_test)
            Yhat[:, i] = yhat.squeeze()
            S2[:, i] = s2.squeeze()

    if testresp is None:
        save_results(respfile, Yhat, S2, maskvol, outputsuffix=outputsuffix)
        return (Yhat, S2)
    else:
        Z = (Yte - Yhat) / np.sqrt(S2)

        print("Evaluating the model ...")
        results = evaluate(Yte, Yhat, S2=S2, mY=mY, sY=sY)

        save_results(respfile,
                     Yhat,
                     S2,
                     maskvol,
                     Z=Z,
                     results=results,
                     outputsuffix=outputsuffix)

        return (Yhat, S2, Z)
示例#11
0
def predict(covfile, respfile=None, maskfile=None, **kwargs):

    model_path = kwargs.pop('model_path', 'Models')
    job_id = kwargs.pop('job_id', None)
    batch_size = kwargs.pop('batch_size', None)
    output_path = kwargs.pop('output_path', '')
    outputsuffix = kwargs.pop('outputsuffix', '_predict')

    if respfile is not None and not os.path.exists(respfile):
        print("Response file does not exist. Only returning predictions")
        respfile = None
    if not os.path.isdir(model_path):
        print('Models directory does not exist!')
        return
    else:
        if os.path.exists(os.path.join(model_path, 'meta_data.md')):
            with open(os.path.join(model_path, 'meta_data.md'), 'rb') as file:
                meta_data = pickle.load(file)
            standardize = meta_data['standardize']
            mY = meta_data['mean_resp']
            sY = meta_data['std_resp']
            mX = meta_data['mean_cov']
            sX = meta_data['std_cov']
        else:
            standardize = False

    if batch_size is not None:
        batch_size = int(batch_size)
        job_id = int(job_id) - 1

    if (output_path != '') and (not os.path.isdir(output_path)):
        os.mkdir(output_path)

    # load data
    print("Loading data ...")
    X = fileio.load(covfile)
    if len(X.shape) == 1:
        X = X[:, np.newaxis]

    sample_num = X.shape[0]
    feature_num = len(glob.glob(os.path.join(model_path, 'NM_*.pkl')))

    Yhat = np.zeros([sample_num, feature_num])
    S2 = np.zeros([sample_num, feature_num])
    Z = np.zeros([sample_num, feature_num])

    if standardize:
        Xz = (X - mX[0]) / sX[0]
    else:
        Xz = X

    # estimate the models for all subjects
    for i in range(feature_num):
        print("Prediction by model ", i + 1, "of", feature_num)
        nm = norm_init(Xz)
        nm = nm.load(
            os.path.join(model_path, 'NM_' + str(0) + '_' + str(i) + '.pkl'))
        yhat, s2 = nm.predict(Xz, **kwargs)

        if standardize:
            Yhat[:, i] = yhat.squeeze() * sY[0][i] + mY[0][i]
            S2[:, i] = s2.squeeze() * sY[0][i]**2
        else:
            Yhat[:, i] = yhat.squeeze()
            S2[:, i] = s2.squeeze()

    if respfile is None:
        save_results(None, Yhat, S2, None, outputsuffix=outputsuffix)

        return (Yhat, S2)

    else:
        Y, maskvol = load_response_vars(respfile, maskfile)
        if len(Y.shape) == 1:
            Y = Y[:, np.newaxis]

        # warp the targets?
        if 'blr' in dir(nm):
            if nm.blr.warp is not None:
                warp_param = nm.blr.hyp[1:nm.blr.warp.get_n_params() + 1]
                Y = nm.blr.warp.f(Y, warp_param)

        Z = (Y - Yhat) / np.sqrt(S2)

        print("Evaluating the model ...")
        results = evaluate(Y,
                           Yhat,
                           S2=S2,
                           metrics=['Rho', 'RMSE', 'SMSE', 'EXPV'])

        print("Evaluations Writing outputs ...")
        save_results(respfile,
                     Yhat,
                     S2,
                     maskvol,
                     Z=Z,
                     outputsuffix=outputsuffix,
                     results=results,
                     save_path=output_path)

        return (Yhat, S2, Z)