示例#1
0
        b = ad[YT_magnetic_field_strength].v
        d = ad[YT_density].v
        dv = ad[YT_cell_volume].v
        #dbins = np.geomspace( d[d>0].min(), d.max(),64)
        #bbins = np.geomspace( b[b>0].min(), b.max(),65)
        dbins = np.geomspace(d_ext.minmax[0], d_ext.minmax[1], 64)
        bbins = np.geomspace(b_ext.minmax[0], b_ext.minmax[1], 65)

        hist, xb, yb = np.histogram2d(d, b, bins=[dbins, bbins], weights=dv)
        #pch.helper(hist,xb,yb,ax=ax)

        d = this_looper.tr.track_dict['density'][:, nf]
        b = this_looper.tr.track_dict['magnetic_field_strength'][:, nf]
        dv = this_looper.tr.track_dict['cell_volume'][:, nf]
        hist, xb, yb = np.histogram2d(d, b, bins=[dbins, bbins], weights=dv)
        pch.helper(hist, xb, yb, ax=ax1)
        axbonk(ax,
               xscale='log',
               yscale='log',
               xlabel='density',
               ylabel='magnetic',
               xlim=d_ext.minmax,
               ylim=b_ext.minmax)
        axbonk(ax1,
               xscale='log',
               yscale='log',
               xlabel='density',
               ylabel='magnetic',
               xlim=d_ext.minmax,
               ylim=b_ext.minmax)
        #ax1.set_xlim( ax.get_xlim())
示例#2
0
    def run(self, core_list=None, plot=False):
        dx = 1. / 2048
        nx = 1. / dx
        thtr = self.this_looper.tr
        all_cores = np.unique(thtr.core_ids)
        if core_list is None:
            core_list = all_cores

        thtr.sort_time()

        tsorted = thtr.times
        self.core_list = core_list
        self.times = tsorted

        self.b_array = np.zeros([len(core_list), len(tsorted)])
        self.d_array = np.zeros([len(core_list), len(tsorted)])
        self.a_array = np.zeros([len(core_list), len(tsorted)])
        if plot:
            ds = this_looper.load(frame)
            ad = ds.all_data()
            b = ad[YT_magnetic_field_strength].v
            d = ad[YT_density].v
            dv = ad[YT_cell_volume].v
            dbins = np.geomspace(d[d > 0].min(), d.max(), 64)
            bbins = np.geomspace(b[b > 0].min(), b.max(), 64)
            hist, xb, yb = np.histogram2d(d,
                                          b,
                                          bins=[dbins, bbins],
                                          weights=dv)

        for nc, core_id in enumerate(core_list):
            print('do %s %d' % (self.this_looper.sim_name, core_id))
            #continue
            #ms = trackage.mini_scrubber(thtr,core_id)
            #ms.particle_pos(core_id)
            #self.ms = ms
            #if ms.nparticles < 10:
            #    continue

            self.cores_used.append(core_id)

            B = thtr.c([core_id], 'magnetic_field_strength')
            density = thtr.c([core_id], 'density')
            cell_volume = thtr.c([core_id], 'cell_volume')
            Vtotal = cell_volume.sum(axis=0)

            self.mean_b[core_id] = (B * cell_volume).sum(axis=0) / Vtotal
            self.b_array[nc, :] = self.mean_b[core_id]
            self.mean_rho[core_id] = (density *
                                      cell_volume).sum(axis=0) / Vtotal
            self.d_array[nc, :] = self.mean_rho[core_id]

            rm = rainbow_map(tsorted.size)
            if plot:
                fig, ax = plt.subplots(1, 1)

                pch.helper(hist, xb, yb, ax=ax)

            for nframe in [0]:  #range(B.shape[1]-1):
                BBB = np.log10(B[:, nframe])
                DDD = np.log10(density[:, nframe])
                popt, pcov = curve_fit(b_from_rho, DDD, BBB, p0=[1, 1])
                self.alpha_FTA[core_id].append(popt[0])

                if plot:

                    ax.scatter(10**DDD,
                               10**BBB,
                               c=[rm(nframe)] * density.shape[0])
                    #ax.scatter(DDD , BBB, c=[rm(nframe)]*density.shape[0])
                    #ax.plot(DDD, DDD*pfit[1]+pfit[0])
                    ax.plot(10**DDD, 10**b_from_rho(DDD, *popt), c='k')
            if np.isnan(self.alpha_FTA[core_id]).any():
                pdb.set_trace()
            self.a_array[nc, :-1] = self.alpha_FTA[core_id]
            if plot:
                axbonk(ax,
                       xscale='log',
                       yscale='log',
                       xlabel='density',
                       ylabel='magnetic_field_strength')
                fig.savefig('plots_to_sort/b_rho_%s_c%04d.png' %
                            (self.this_looper.sim_name, core_id))
示例#3
0
def plot_phi(this_looper, core_list=None):
    if core_list is None:
        core_list = np.unique(this_looper.tr.core_ids)

    frame = this_looper.target_frame
    for core_id in core_list:
        print('Potential %s %d' % (this_looper.sim_name, core_id))
        save_prefix = 'plots_to_sort/%s_n%04d_c%04d' % (this_looper.sim_name,
                                                        frame, core_id)
        ds = this_looper.load(frame)
        xtra_energy.add_energies(ds)
        ms = trackage.mini_scrubber(this_looper.tr, core_id)
        c = nar([ms.mean_x[-1], ms.mean_y[-1], ms.mean_z[-1]])

        rsph = ds.arr(8.0 / 128, 'code_length')
        #rsph = ds.arr(2/128,'code_length')
        sp = ds.sphere(c, rsph)

        if 0:
            proj = ds.proj('grav_energy', 0, center=c, data_source=sp)
            pw = proj.to_pw(center=c)
            pw.zoom(32)
            pw.save(save_prefix)

        GE = np.abs(sp['grav_energy'])
        dv = np.abs(sp['cell_volume'])
        RR = sp['radius']
        r_sphere = sp['radius']
        DD = sp['density']

        ok = RR < 0.01

        fit = np.polyfit(np.log10(RR[ok]), np.log10(DD[ok]), 1)
        M = sp['cell_mass'].sum()
        G = 1620 / (4 * np.pi)
        coe = -1 / (8 * np.pi * G)
        power = 2 * fit[0] + 2
        phi_del_squ_analy = (coe * G**2 * M**2 * r_sphere**
                             (power)) / max(r_sphere)**(2 * fit[0] + 6)

        fig, ax = plt.subplots(1, 2)
        ax0 = ax[0]
        ax1 = ax[1]
        if 1:
            rbins = np.geomspace(r_sphere[r_sphere > 0].min(), r_sphere.max(),
                                 64)
            gbins = np.geomspace(GE[GE > 0].min(), GE.max(), 64)
            hist, xb, yb = np.histogram2d(r_sphere,
                                          GE,
                                          bins=[rbins, gbins],
                                          weights=dv)
            pch.helper(hist, xb, yb, ax=ax0, transpose=False)
        if 1:
            rbins = np.geomspace(r_sphere[r_sphere > 0].min(), r_sphere.max(),
                                 64)
            dbins = np.geomspace(DD[DD > 0].min(), DD.max(), 64)
            hist, xb, yb = np.histogram2d(r_sphere,
                                          DD,
                                          bins=[rbins, dbins],
                                          weights=dv)
            pch.helper(hist, xb, yb, ax=ax1, transpose=False)
        if 0:
            ax.scatter(sp['radius'], -sp['grav_energy'], c='r', s=0.1)
            #ax.set_xlim(sp['radius'].min(),sp['radius'].max())

        if 1:
            axt = ax0.twinx()
            sort = np.argsort(sp['radius'])
            rsort = sp['radius'][sort]
            GEdv = (GE * RR)[sort]
            tots = np.cumsum(GEdv)
            axt.plot(rsort, tots)

        ax0.plot(RR, np.abs(phi_del_squ_analy), c='k')
        ax1.plot(RR[ok], 10**(fit[0] * np.log10(RR[ok]) + fit[1]), c='r')
        axbonk(ax0,
               xscale='log',
               yscale='log',
               xlabel='r',
               ylabel='abs(grav_eng)')
        axbonk(ax1, xscale='log', yscale='log', xlabel='r', ylabel='density')
        fig.savefig(save_prefix + "grav_eng")
        continue
        ax.clear()
        bins = np.geomspace(GE[GE > 0].min(), GE.max(), 64)
        ax.hist(np.abs(sp['grav_energy']), bins=bins, histtype='step')
        axbonk(ax, xlabel='Grad Phi', ylabel='N', xscale='log', yscale='log')
        fig.savefig(save_prefix + "grad_phi_hist")

        min_ge = np.argmin(GE)
        x, y, z = sp['x'][min_ge], sp['y'][min_ge], sp['z'][min_ge]
        c = ds.arr([x, y, z], 'code_length')
        SSS = yt.SlicePlot(ds, 'x', 'grav_energy', center=c)
        SSS.annotate_sphere(center=c, radius=rsph)
        SSS.save(save_prefix)
        SSS = yt.SlicePlot(ds, 'x', 'kinetic_energy', center=c)
        #SSS.annotate_sphere(sp)
        SSS.save(save_prefix)
示例#4
0
        ps2 = phi2.sum(axis=0)
        p3min, p3max = min([ps1.min(), ps2.min()]), max([ps1.max(), ps2.max()])
        norm = mpl.colors.Normalize(p3min, p3max)
        ax2.imshow(ps1, norm=norm)
        ax3.imshow(ps2, norm=norm)

        print('more plots')
        if 1:
            rbins = np.geomspace(1 / 2048, rcube.max(), 64)
            phibins = np.linspace(phi_min, phi_max, 65)
            print('  hist1')
            hist1, xb1, yb1 = np.histogram2d(rcube.flatten(),
                                             phi1.flatten(),
                                             bins=[rbins, phibins],
                                             weights=dv_cube.flatten())
            pch.helper(hist1, xb1, yb1, ax=ax4)
            print('  hist2')
            hist2, xb2, yb2 = np.histogram2d(rcube.flatten(),
                                             phi2.flatten(),
                                             bins=[rbins, phibins],
                                             weights=dv_cube.flatten())
            pch.helper(hist2, xb2, yb2, ax=ax5)
            ax4.set_xscale('log')
            ax5.set_xscale('log')
            ax4.set_ylim(phi_min, phi_max)
            ax5.set_ylim(phi_min, phi_max)

        if 0:
            ax4.scatter(rcube.flatten(), phi1.flatten(), c='k', s=0.1)
            ax5.scatter(rcube.flatten(), phi2.flatten(), c='r', s=0.1)
            #ax4.set_ylim(phi_min,phi_max)
示例#5
0
    def run(self,
            output_prefix='NAME',
            core_list=None,
            frames=None,
            verbose=False,
            los_list=[-1],
            external_ax=None):
        print('w3', core_list)
        dx = 1. / 2048
        nx = 1. / dx
        thtr = self.other_looper.tr
        all_cores = np.unique(thtr.core_ids)
        if core_list is None:
            core_list = all_cores
        if hasattr(core_list, 'v'):
            core_list = core_list.v  #needs to not have unit.
            core_list = core_list.astype('int')
        if frames is None:
            frames = thtr.frames

        thtr.sort_time()

        tsorted = thtr.times / colors.tff
        self.core_list = core_list
        mini_scrubbers = {}
        other_looper = self.other_looper

        for core_id in core_list:
            print('Otherones core %d' % core_id)
            ms = trackage.mini_scrubber(other_looper.tr,
                                        core_id,
                                        do_velocity=False)
            #ms.make_floats(core_id)

            Ncol = len(frames)
            frame_index = [
                np.where(other_looper.tr.frames == frame)[0][0]
                for frame in frames
            ]
            frame_str = "_%04d" * Ncol % tuple(frames)
            nrows = len(frame_index)
            counter = -1
            if external_ax is not None:
                axes = external_ax
            else:
                fig, axes = plt.subplots(nrows, 3, figsize=(12, 8))
            for nt, frame in zip(frame_index, frames):
                counter += 1

                ax0 = axes[counter][0]
                #ax0.set_aspect('equal')
                ax1 = axes[counter][1]

                #ax = axes[counter][1]
                #ax.set_aspect('equal')

                delta = 0.1

                mask = slice(None)
                this_x, this_y, this_z = ms.this_x[mask, nt], ms.this_y[
                    mask, nt], ms.this_z[mask, nt]
                this_p = [this_x, this_y, this_z]

                x = 1
                y = 2
                ax0.set_xlabel('xyz'[x] + ' [code units]')
                ax0.set_ylabel('xyz'[y] + ' [code units]')
                #ax.set_xlabel('xyz'[x]+' [code units]')
                #ax.set_ylabel('xyz'[y]+' [code units]')

                x_min, x_max, y_min, y_max = [1, 0, 1, 0]

                x_min = min([x_min, this_p[x].min(), -delta])
                x_max = max([x_max, this_p[x].max(), 1 + delta])
                y_min = min([y_min, this_p[y].min(), -delta])
                y_max = max([y_max, this_p[y].max(), 1 + delta])

                if 1:
                    #projection by 2d histogram.
                    x_ext = extents()  #this_p[x])
                    y_ext = extents()  #this_p[y])
                    x_ext(this_p[x])
                    y_ext(this_p[y])
                    #they're quantized at t=0
                    dx = 1. / 128
                    dx = [1. / 128, 1. / 256][counter]
                    x_quantized = np.floor(
                        nar(x_ext.minmax) / dx) * dx + 0.5 * dx
                    y_quantized = np.floor(
                        nar(y_ext.minmax) / dx) * dx + 0.5 * dx

                    xbins = np.mgrid[
                        x_quantized[0]:x_quantized[1]:dx] + 0.5 * dx
                    ybins = np.mgrid[
                        y_quantized[0]:y_quantized[1]:dx] + 0.5 * dx
                    #r_bins = np.geomspace( *r_ext.minmax)
                    hist, xb, yb = np.histogram2d(this_p[x],
                                                  this_p[y],
                                                  bins=[xbins, ybins])
                    #pch.helper(hist,xb,yb,ax=ax, cmap_name='Blues')
                    pch.helper(hist, xb, yb, ax=ax0, cmap_name='Blues')

                    ms2 = trackage.mini_scrubber(self.first_looper.tr,
                                                 core_id,
                                                 do_velocity=False)

                    first_p = np.stack([
                        ms2.this_x[:, nt], ms2.this_y[:, nt], ms2.this_z[:, nt]
                    ])
                    #ax.scatter( first_p[x], first_p[y], s=1, marker='+',c='r')
                    ax0.scatter(first_p[x], first_p[y], c='r', marker='.', s=1)
                    box_x, box_y = [0, 1, 1, 0, 0], [0, 0, 1, 1, 0]
                    ax0.plot(box_x, box_y, c=[0.5] * 3)
                if 0:
                    #projection by mapping the positions onto a cube and projecting.
                    #May be inefficient, definitely cumbersome.
                    ii = np.floor((nar(this_p) * 128)).astype('int')
                    imin = ii.min(axis=1)
                    ii[0] -= imin[0]
                    ii[1] -= imin[1]
                    ii[2] -= imin[2]
                    image = np.zeros([ii.max() + 1] * 3)
                    image[ii[0], ii[1], ii[2]] = 1
                    #ax.scatter( this_p[x], this_p[y])
                    #ax.scatter( ii[x], ii[y])
                    #ax.scatter(ii[x].flatten(), ii[y].flatten())
                    if 1:
                        TheZ = image.sum(axis=1)
                        norm = mpl.colors.LogNorm(vmin=1, vmax=TheZ.max())
                        cmap = copy.copy(mpl.cm.get_cmap("Blues"))
                        cmap.set_under('w')
                        #ax.pcolormesh(xx,yy,TheZ, norm=norm,cmap=cmap)
                        #ax.imshow(TheZ, cmap=cmap, norm=norm, origin='lower',interpolation='nearest')

                    box_x, box_y = [0, 1, 1, 0, 0], [0, 0, 1, 1, 0]
                    box_x, box_y = nar(box_x) * 128 - imin[x], nar(
                        box_y) * 128 - imin[y]
                    ax.plot(box_x, box_y, c=[0.5] * 3)

                    ms2 = trackage.mini_scrubber(self.first_looper.tr,
                                                 core_id,
                                                 do_velocity=False)

                    first_p = np.stack([
                        ms2.this_x[:, nt], ms2.this_y[:, nt], ms2.this_z[:, nt]
                    ])

                    ax.scatter(first_p[x] * 128 - imin[x],
                               first_p[y] * 128 - imin[y],
                               s=1,
                               marker='+',
                               c='r')
                    #ax.scatter( first_p[x]*128-imin[x], first_p[y]*128-imin[y], s=100, facecolors='none',edgecolors='k')
                    #ax.scatter( first_p[x], first_p[y], s=100)

                    xticks = np.mgrid[-imin[x]:128 - imin[x]:11j]
                    labs = ["%0.1f" % val for val in (xticks + imin[x]) / 128]
                    ax.set_xticks(xticks)
                    ax.set_xticklabels(labs)

                    yticks = np.mgrid[-imin[y]:128 - imin[y]:11j]
                    labs = ["%0.1f" % val for val in (yticks + imin[y]) / 128]
                    ax.set_yticks(yticks)
                    ax.set_yticklabels(labs)
                    ax.set_xlabel(r'$%s$' % ('xyz'[x]))
                    ax.set_ylabel(r'$%s$' % ('xyz'[y]))

                other_density = other_looper.tr.c([core_id], 'density')[:, nt]
                first_density = self.first_looper.tr.c([core_id],
                                                       'density')[:, nt]

                other_x = ms.this_x[:, nt] - ms2.mean_x[nt]
                other_y = ms.this_y[:, nt] - ms2.mean_y[nt]
                other_z = ms.this_z[:, nt] - ms2.mean_z[nt]
                other_r = np.sqrt(other_x**2 + other_y**2 + other_z**2)
                rmin = 1 / 2048
                rmax = other_r.max()
                other_r[other_r < rmin] = rmin
                rrr = ms2.r[:, nt] + 0
                rrr[rrr < rmin] = rmin
                r_ext = extents()
                d_ext = extents()
                r_ext(other_r)
                d_ext(other_density)
                r_ext(rrr)
                d_ext(first_density)

                reload(pch)
                rho_bins = np.geomspace(other_density.min(),
                                        other_density.max(), 64)
                r_bins = np.geomspace(*r_ext.minmax)
                hist, xb, yb = np.histogram2d(other_r,
                                              other_density,
                                              bins=[r_bins, rho_bins])
                pch.helper(hist, xb, yb, ax=ax1, cmap_name='Greens')

                #ax1.scatter( rrr, first_density, s=100, facecolors='none',edgecolors='k')
                ax1.scatter(rrr, first_density, s=1, marker='+', c='r')
                axbonk(ax1,
                       xscale='log',
                       yscale='log',
                       xlim=r_ext.minmax,
                       ylim=d_ext.minmax,
                       xlabel=r'$r [code\ units]$',
                       ylabel=r'$density\ [code\ units]$')
                #axbonk(ax,xlabel='xyz'[x]+' [code units]',ylabel='xyz'[x]+' [code units]')

            if external_ax is None:
                outname = 'plots_to_sort/otherones_%s_c%04d_%s.png' % (
                    output_prefix, core_id, frame_str)
                fig.savefig(outname)
                plt.close(fig)
                print(outname)
示例#6
0
    def run(self, core_list=None, do_plots=True, do_proj=True):
        if core_list is None:
            core_list = np.unique(this_looper.tr.core_ids)

        this_looper = self.this_looper
        frame = this_looper.target_frame
        ds = this_looper.load(frame)
        G = ds['GravitationalConstant'] / (4 * np.pi)
        xtra_energy.add_energies(ds)
        for core_id in core_list:
            print('Potential %s %d' % (this_looper.sim_name, core_id))

            ms = trackage.mini_scrubber(this_looper.tr, core_id)
            c = nar([ms.mean_x[-1], ms.mean_y[-1], ms.mean_z[-1]])

            R_SPHERE = 8 / 128
            rsph = ds.arr(R_SPHERE, 'code_length')
            sp = ds.sphere(c, rsph)

            GE = np.abs(sp['grav_energy'])
            dv = np.abs(sp['cell_volume'])
            RR = sp['radius']
            DD = sp['density']

            R_KEEP = self.rinflection[core_id]

            #2d distribution of GE vs r

            gbins = np.geomspace(GE[GE > 0].min(), GE.max(), 65)
            rbins = np.geomspace(RR[RR > 0].min(), RR.max(), 67)
            r_cen = 0.5 * (rbins[1:] + rbins[:-1])  #we'll need this later.
            hist, xb, yb = np.histogram2d(RR,
                                          GE,
                                          bins=[rbins, gbins],
                                          weights=dv)

            #get the zones in the sphere that are
            #within R_KEEP
            ok_fit = np.logical_and(RR < R_KEEP, GE > 0)

            rok = RR[ok_fit].v

            #
            # Binding energy and GMM/R
            #
            ge_total = (GE[ok_fit] * dv[ok_fit]).sum()
            mtotal = (sp['cell_mass'][ok_fit]).sum()
            gmm = G * mtotal**2 / R_KEEP
            self.output['ge_total'].append(ge_total)
            self.output['gmm'].append(gmm)

            if 1:
                #store stuff
                self.output['mass'].append(mtotal)
                self.output['r0'].append(R_KEEP)

            if 0:
                #Just fit GE
                def plain_powerlaw(x, q, r0):
                    return q * x + r0

                popt, pcov = curve_fit(plain_powerlaw, np.log10(rok),
                                       np.log10(GE[ok_fit]))
                GE_fit_line = 10**plain_powerlaw(np.log10(rok), *popt)
                ouput['alpha_ge'].append(popt[0])
            if 1:
                #Better ge fit
                def plain_powerlaw(x, q, norm):
                    return (2 * q + 2) * x + norm  #np.log10(G*mtotal/R_KEEP)

                popt, pcov = curve_fit(plain_powerlaw, np.log10(rok / R_KEEP),
                                       np.log10(GE[ok_fit]))
                A = 10**popt[1]
                alpha = popt[0]
                rmax = (rok).max()
                rmin = (rok).min()

                rfit = np.linspace(rmin, rmax, 128)
                rr = 0.5 * (rfit[1:] + rfit[:-1])
                dr = rfit[1:] - rfit[:-1]

                GE_fit_line = 10**plain_powerlaw(np.log10(rr / R_KEEP), *popt)
                #GE_fit_line=10**plain_powerlaw(np.log10(rok/R_KEEP), *popt)
                self.output['alpha_ge'].append(alpha)
                self.output['A'].append(A)
                self.output['AA'].append(G**2 * mtotal**2 /
                                         R_KEEP**(2 * alpha + 2))

                R0 = R_KEEP
                self.output['analytic'].append(
                    4 * np.pi * A / ((R0**(2 * alpha + 2) * (2 * alpha + 5))) *
                    (rmax**(2 * alpha + 5) - rmin**(2 * alpha + 5)))
                self.output['rmin'].append(rmin)
                self.output['rmax'].append(rmax)
                self.output['analytic2'].append(
                    4 * np.pi * A / ((R0**(2 * alpha + 2) * (2 * alpha + 5))) *
                    (R_KEEP**(2 * alpha + 5)))
                R0 = R_KEEP
                M = mtotal
                E1 = (-G * M * M / R0**(2 * alpha + 6) /
                      (2 * alpha + 5)) * (R0**(2 * alpha + 5) -
                                          rmin**(2 * alpha + 5))

                self.output['ann_good'].append(E1)

            if 1:
                #Fit density
                #Maybe its not necessary to histogram first, but it makes plotting easier.
                rbins = np.geomspace(RR[RR > 0].min(), RR.max(), 67)
                dbins = np.geomspace(DD[DD > 0].min(), DD.max(), 65)
                dhist, xbdr, ybdr = np.histogram2d(RR,
                                                   DD,
                                                   bins=[rbins, dbins],
                                                   weights=dv)

                dok = DD[ok_fit]

                def powerlaw_r0_rkeep(r, q, rho0):
                    return q * np.log10(r / R_KEEP) + np.log10(rho0)

                poptd, pcovd = curve_fit(powerlaw_r0_rkeep, rok, np.log10(dok))
                self.output['alpha_rho'].append(poptd[0])

            if do_proj:
                proj_axis = 0
                dx = 1 / 2048
                nx = 2 * R_SPHERE / dx

                pd = ds.proj('density', proj_axis, data_source=sp, center=c)
                frb = pd.to_frb(2 * R_SPHERE, nx, center=c)
                fig2, rx = plt.subplots(1, 2, figsize=(12, 8))
                rx0 = rx[0]
                rx1 = rx[1]
                column_density = frb['density']
                norm = mpl.colors.LogNorm(column_density.min(),
                                          column_density.max())
                rx0.imshow(column_density, norm=norm)

                column_density = frb[YT_grav_energy]
                linthresh = 1
                norm = mpl.colors.SymLogNorm(linthresh,
                                             vmin=column_density.min(),
                                             vmax=0)
                rx1.imshow(column_density, norm=norm)

                center = nar(column_density.shape) / 2
                circle = plt.Circle(center, R_KEEP / dx, fill=False)
                rx0.add_artist(circle)
                circle = plt.Circle(center, R_KEEP / dx, fill=False)
                rx1.add_artist(circle)
                fig2.savefig('plots_to_sort/cPhiProj_%s_c%04d' %
                             (this_looper.sim_name, core_id))
            #Some plotting and fitting.
            if do_plots:

                fig, ax = plt.subplots(1, 2)
                ax0 = ax[0]
                ax1 = ax[1]

                if 0:
                    #plot GE
                    ax0.plot(r_cen[keepers], UE)
                    pch.helper(h2, xb, yb, ax=ax0, transpose=False)
                    #ax0.plot( rok, GE_fit_line,c='r')
                    ax0.plot(rr, GE_fit_line, c='r')
                    ax0.scatter(R_KEEP, UE[index], c='r')
                    AlsoA = colors.G * mtotal**2 / (4 * np.pi) * R_KEEP**(-4)
                    ax0.scatter(R_KEEP, A, c='g', marker='*')
                    ax0.scatter(R_KEEP, AlsoA, c='b', marker='*')
                if 1:
                    #plot density
                    pch.helper(dhist, xbdr, ybdr, ax=ax1, transpose=False)
                    axbonk(ax1,
                           xscale='log',
                           yscale='log',
                           xlabel='r',
                           ylabel='rho')
                    #density_fit_line=10**( poptd[0]*np.log10(rok)+np.log10(poptd[1]))
                    density_fit_line = 10**(powerlaw_r0_rkeep(rok, *poptd))
                    ax1.plot(rok, density_fit_line, c='g')

                    if 0:
                        rmin = r_cen[keepers].min()
                        ok2 = (RR < R_KEEP) * (RR > rmin)
                        M = sp['cell_mass'][ok2].sum()
                        coe = 1 / (8 * np.pi * G)
                        power = 2 * poptd[0] + 2
                        #print('DANS POWER',power)
                        #phi_del_squ_analy = (coe*G**2*M**2*rok**(power))/R_KEEP**(2*poptd[0]+6)
                        #horse around
                        DanA = (coe * G**2 * M**2) / R_KEEP**(2 * poptd[0] + 6)
                        phi_del_squ_analy = DanA * rok**(power)
                        self.output['DanA'].append(DanA)
                        alpha = poptd[0]
                        rho0 = poptd[1]
                        #phi_del_squ_analy = (4*np.pi*G*rho0*R_KEEP**(-alpha)*(2*alpha+5)/(alpha+3))**2*rok**power
                        #phi_del_squ_analy = (4*np.pi*G*rho0*R_KEEP**(-alpha)*(alpha+2)/(alpha+3))**2*rok**power
                        ax0.plot(rok, phi_del_squ_analy, c='g')

                    if 0:
                        #works pretty well
                        M = sp['cell_mass'].sum()
                        coe = 1 / (8 * np.pi * G)
                        power = 2 * poptd[0] + 2
                        phi_del_squ_analy = (coe * G**2 * M**2 * rbins**(power)
                                             ) / RR.max()**(2 * poptd[0] + 6)
                        #print(phi_del_squ_analy)
                        ax0.plot(rbins, phi_del_squ_analy, c='k')

                if 0:
                    #color the upper envelope
                    #to make sure we get it right.
                    print(hist.shape)
                    y = np.arange(hist.shape[1])
                    y2d = np.stack([y] * hist.shape[0])
                    argmax = np.argmax(y2d * (hist > 0), axis=1)
                    ind = np.arange(hist.shape[0])
                    #take = np.ravel_multi_index(nar([argmax,ind]),hist.shape)
                    take = np.ravel_multi_index(nar([ind, argmax]), hist.shape)
                    h1 = hist.flatten()
                    h1[take] = hist.max()
                    h1.shape = hist.shape
                    pch.helper(h1, xb, yb, ax=ax0, transpose=False)

                outname = 'plots_to_sort/%s_c%04d_potfit' % (
                    this_looper.sim_name, core_id)
                axbonk(ax0,
                       xscale='log',
                       yscale='log',
                       xlabel='r',
                       ylabel='grad phi sq')
                fig.savefig(outname)
                print(outname)
示例#7
0
    def run(self,core_list=None, do_plots=True,do_proj=True):
        if core_list is None:
            core_list = np.unique(this_looper.tr.core_ids)

        this_looper=self.this_looper
        frame = this_looper.target_frame
        ds = this_looper.load(frame)
        G = ds['GravitationalConstant']/(4*np.pi)
        xtra_energy.add_energies(ds)
        for core_id in core_list:
            #print('Potential %s %d'%(this_looper.sim_name,core_id))

            ms = trackage.mini_scrubber(this_looper.tr,core_id)
            c = nar([ms.mean_x[-1], ms.mean_y[-1],ms.mean_z[-1]])
            
            R_SPHERE = 8/128
            rsph = ds.arr(R_SPHERE,'code_length')
            sp = ds.sphere(c,rsph)

            GE = np.abs(sp['grav_energy'])
            dv = np.abs(sp['cell_volume'])
            RR = sp['radius']
            DD = sp['density']

            R_KEEP = R_SPHERE #self.rinflection[core_id]

            rinflection=None
            if self.rinflection is not None:
                rinflection = self.rinflection[core_id]

            #get the zones in the sphere that are
            #within R_KEEP
            ok_fit = np.logical_and(RR  < R_KEEP, GE>0)

            rok=RR[ok_fit].v



            ORDER = np.argsort(rok)
            rho_o = DD[ok_fit][ORDER].v
            ge_o = GE[ok_fit][ORDER].v
            dv_o  = dv[ok_fit][ORDER].v
            rr_o_full  = RR[ok_fit][ORDER].v
            mass_r = (rho_o*dv_o).cumsum()
            enrg_r = (ge_o*dv_o).cumsum()

            rr_o = np.linspace( max([1/2048, rr_o_full.min()]), rr_o_full.max(), 128)

            enrg_i = interp1d( rr_o_full, enrg_r)

            gmm_r = interp1d( rr_o_full, G*mass_r**2/rr_o_full)



            all_r,all_m=rr_o_full[1:], mass_r[1:]
            my_r = np.linspace(max([1/2048, all_r.min()]),all_r.max(),1024)
            mbins = np.linspace( all_m.min(), all_m.max(), 128)
            thing, mask = np.unique( all_r, return_index=True)
              
            mfunc = interp1d( all_r[mask], all_m[mask])
            my_m = gaussian_filter(mfunc(my_r),2)
            fact=enrg_r.max()/my_m.max()

            fig2,ax2=plt.subplots(1,1)
            ay0=ax2
            ay0.plot( rr_o, enrg_i(rr_o), c='k', label=r'$E_G$')
            ay0.plot( rr_o, gmm_r(rr_o), c='r', label = r'$GM(<R)^2/R$')

            az0=ay0.twinx()
            ay0.plot( all_r, all_m*fact, c=[0.5]*4)#, label=r'$M*f$')
            ay0.plot( my_r, my_m * fact, c='m', label=r'$M*f$')
            #ay0.plot( xcen, average_mass, c='r')
            #az0.plot( my_r, my_m )
            #az0.plot( rr_o, rho_o)
            #az0.set_yscale('log')
            dm=(my_m[1:]- my_m[:-1])
            mm =0.5*(my_m[1:]+my_m[:-1])
            dr=(my_r[1:]-my_r[:-1])
            dm_dr = dm/dr
            rbins = 0.5*(my_r[1:]+my_r[:-1])

            SWITCH=2*rbins*dm_dr/mm 
            #az0.plot( rbins, SWITCH*my_m.max()/SWITCH.max())
            az0.plot( rbins, SWITCH, c='b', label='$2 M^\prime /M$')
            findit=np.logical_and( rbins>0.01, SWITCH <= 1)
            PROBLEM=False
            if findit.sum() > 0:
                ok = np.where(findit)[0][0]
                SWITCH=2*rbins*dm_dr/mm 
                az0.scatter( my_r[ok-1], SWITCH[ok-1], c='b')
                az0.axvline( my_r[ok-1], c='b')
                az0.axhline(1, c='b')
            else:
                PROBLEM=True
                print("PROBLEM CANNOT FIND RMASS")
            if rinflection is not None:
                ay0.axvline( rinflection, c='r', label='$R_I$')
                
            if PROBLEM:
                ay0.set_title('NO MASS EDGE')
            outname='plots_to_sort/%s_cuml_c%04d.png'%(this_looper.sim_name, core_id)
            ay0.legend(loc=2)
            az0.legend(loc=4)
            axbonk( ay0, xlabel='r',ylabel='E/M', xscale='log', yscale='log')
            axbonk( az0, ylabel=r'$2 M^\prime/(M/R)$', xscale='log', yscale='log')
            fig2.savefig(outname)
            print(outname)




            if 0:
                #Fit density
                #Maybe its not necessary to histogram first, but it makes plotting easier.
                rbins = np.geomspace( RR [RR >0].min(), RR .max(),67)
                dbins = np.geomspace( DD[DD>0].min(), DD.max(),65)
                dhist, xbdr, ybdr = np.histogram2d( RR , DD, bins=[rbins,dbins],weights=dv)

                dok=DD[ok_fit]
                def powerlaw_r0_rkeep( r, q, rho0):
                    return q*np.log10(r/R_KEEP)+np.log10(rho0)
                poptd, pcovd=curve_fit(powerlaw_r0_rkeep, rok, np.log10(dok))
                self.output['alpha_rho'].append(poptd[0])

            if do_proj:
                proj_axis=0
                dx = 1/2048
                nx = 2*R_SPHERE/dx

                pd = ds.proj('density',proj_axis,data_source=sp, center=c)
                frb=pd.to_frb(2*R_SPHERE,nx,center=c)
                fig2,rx=plt.subplots(1,2, figsize=(12,8))
                rx0=rx[0]; rx1=rx[1]
                column_density=frb['density']
                norm = mpl.colors.LogNorm( column_density.min(),column_density.max())
                rx0.imshow(column_density,norm=norm)

                column_density=frb[YT_grav_energy]
                linthresh=1
                norm = mpl.colors.SymLogNorm(linthresh, vmin=column_density.min(),vmax=0)

                xx = ds.coordinates.x_axis[proj_axis]
                yy = ds.coordinates.y_axis[proj_axis]
                vh=frb['velocity_%s'%'xyz'[xx]][::8]
                vv=frb['velocity_%s'%'xyz'[yy]][::8]
                nx,ny=column_density.shape
                the_x,the_y = np.mgrid[0:nx:8,0:ny:8]
                #pdb.set_trace()
                #the_x=frb['xyz'[xx]]
                #the_y=frb['xyz'[yy]]

                rx1.imshow(column_density,norm=norm)
                rx1.quiver(the_x,the_y,vh,vv)

                center = nar(column_density.shape)/2
                circle = plt.Circle( center, R_KEEP/dx,fill=False)
                rx0.add_artist(circle)
                circle = plt.Circle( center, R_KEEP/dx,fill=False)
                rx1.add_artist(circle)
                fig2.savefig('plots_to_sort/cPhiProj_%s_c%04d'%(this_looper.sim_name, core_id))
            #Some plotting and fitting.
            if do_plots:

                fig,ax=plt.subplots(1,2)
                ax0=ax[0]; ax1=ax[1]

                if 1:
                    #plot GE
                    #ax0.plot(r_cen[keepers], UE)
                    pch.helper(h2,xb,yb,ax=ax0,transpose=False)
                    #ax0.plot( rok, GE_fit_line,c='r')
                    ax0.plot( rr, GE_fit_line,c='r')
                    #ax0.scatter( R_KEEP,UE[index],c='r')
                    #AlsoA=colors.G*mtotal**2/(4*np.pi)*R_KEEP**(-4)
                    ax0.scatter( R_KEEP, A, c='r',marker='*')
                    #ax0.scatter( R_KEEP, AlsoA, c='b',marker='*')
                if 1:
                    #plot density
                    pch.helper(dhist,xbdr,ybdr,ax=ax1,transpose=False)
                    axbonk(ax1,xscale='log',yscale='log',xlabel='r',ylabel='rho')
                    #density_fit_line=10**( poptd[0]*np.log10(rok)+np.log10(poptd[1]))
                    density_fit_line=10**( powerlaw_r0_rkeep( rok, *poptd))
                    ax1.plot( rok, density_fit_line,c='g')

                    if 0:
                        rmin=r_cen[keepers].min()
                        ok2 = (RR < R_KEEP)*(RR >  rmin)
                        M = sp['cell_mass'][ok2].sum()
                        coe = 1/(8*np.pi*G)
                        power=2*poptd[0]+2
                        #print('DANS POWER',power)
                        #phi_del_squ_analy = (coe*G**2*M**2*rok**(power))/R_KEEP**(2*poptd[0]+6)
                        #horse around
                        DanA = (coe*G**2*M**2)/R_KEEP**(2*poptd[0]+6)
                        phi_del_squ_analy = DanA*rok**(power)
                        self.output['DanA'].append( DanA)
                        alpha=poptd[0]
                        rho0=poptd[1]
                        #phi_del_squ_analy = (4*np.pi*G*rho0*R_KEEP**(-alpha)*(2*alpha+5)/(alpha+3))**2*rok**power
                        #phi_del_squ_analy = (4*np.pi*G*rho0*R_KEEP**(-alpha)*(alpha+2)/(alpha+3))**2*rok**power
                        ax0.plot( rok, phi_del_squ_analy ,c='g')

                    if 0:
                        #works pretty well
                        M = sp['cell_mass'].sum()
                        coe = 1/(8*np.pi*G)
                        power=2*poptd[0]+2
                        phi_del_squ_analy = (coe*G**2*M**2*rbins**(power))/RR.max()**(2*poptd[0]+6)
                        #print(phi_del_squ_analy)
                        ax0.plot( rbins, phi_del_squ_analy ,c='k')



                outname='plots_to_sort/%s_c%04d_potfit'%(this_looper.sim_name,core_id)
                axbonk(ax0,xscale='log',yscale='log',xlabel='r',ylabel='grad phi sq')
                fig.savefig(outname)
                print(outname)