示例#1
0
def test_plotting():
    """Test that the plots show properly."""
    out_dir = _TempDir()
    fname, behf, corrupted = make_raw(out_dir)
    raw = _read_raw(fname, preload=True)
    pd = raw._data[0]
    candidates = _find_pd_candidates(pd,
                                     max_len=max_len,
                                     baseline=baseline,
                                     zscore=zscore,
                                     max_flip_i=max_flip_i,
                                     sfreq=raw.info['sfreq'])[0]
    beh = _read_tsv(behf)
    beh_events = np.array(beh['fix_onset_time']) * raw.info['sfreq']
    beh_events_adjusted, alignment, events = _find_best_alignment(
        beh_events,
        candidates,
        exclude_shift,
        resync,
        raw.info['sfreq'],
        verbose=False)
    errors = beh_events_adjusted - events + alignment
    _plot_trial_errors(beh_events_adjusted, alignment, events, errors,
                       exclude_shift, raw.info['sfreq'])
    errors[abs(errors) / raw.info['sfreq'] > 2 * exclude_shift] = np.nan
    np.testing.assert_array_almost_equal(plt.gca().lines[0].get_ydata(),
                                         errors)
    section_data = [(0, 'test', np.random.random(10))]
    _plot_excluded_events(section_data, 2)
    assert plt.gca().title.get_text() == 'test'
    np.testing.assert_array_equal(plt.gca().lines[0].get_ydata(),
                                  section_data[0][2])
示例#2
0
def test_two_pd_alignment():
    """Test spliting photodiode events into two and adding."""
    out_dir = _TempDir()
    raw, _, events, _ = pd_parser.simulate_pd_data(prop_corrupted=0.)
    fname = op.join(out_dir, 'test-raw.fif')
    raw.save(fname)
    events2 = events[::2]
    events3 = events[1:][::2]
    # make behavior data
    np.random.seed(12)
    beh_events2 = events2[:, 0].astype(float) / raw.info['sfreq']
    offsets2 = np.random.random(len(beh_events2)) * 0.05 - 0.025
    beh_events2 += offsets2
    # make next one
    beh_events3 = events3[:, 0].astype(float) / raw.info['sfreq']
    offsets3 = np.random.random(len(beh_events3)) * 0.05 - 0.025
    beh_events3 += offsets3
    n_na = abs(len(beh_events2) - len(beh_events3))
    if len(beh_events2) > len(beh_events3):
        beh_events3 = list(beh_events3) + ['n/a'] * n_na
    elif len(beh_events3) > len(beh_events2):
        beh_events2 = list(beh_events2) + ['n/a'] * n_na
    beh = dict(trial=np.arange(len(beh_events2)),
               fix_onset_time=beh_events2,
               response_onset_time=beh_events3)
    behf = op.join(out_dir, 'behf-test.tsv')
    _to_tsv(behf, beh)
    pd_parser.parse_pd(fname,
                       pd_event_name='Fixation',
                       beh=beh,
                       pd_ch_names=['pd'],
                       beh_key='fix_onset_time',
                       zscore=20,
                       exclude_shift=0.05)
    pd_parser.parse_pd(fname,
                       pd_event_name='Response',
                       beh=beh,
                       pd_ch_names=['pd'],
                       beh_key='response_onset_time',
                       zscore=20,
                       add_events=True,
                       exclude_shift=0.05)
    raw = _read_raw(fname)
    annot, pd_ch_names, beh2 = _load_data(raw)
    raw.set_annotations(annot)
    events4, event_id = mne.events_from_annotations(raw)
    np.testing.assert_array_equal(events4[events4[:, 2] == 1, 0], events2[:,
                                                                          0])
    np.testing.assert_array_equal(events4[events4[:, 2] == 2, 0], events3[:,
                                                                          0])
    assert pd_ch_names == ['pd']
    np.testing.assert_array_equal(beh2['pd_parser_sample'], events2[:, 0])
示例#3
0
def test_parse_audio():
    out_dir = _TempDir()
    max_len = 0.25
    zscore = 10
    audio_fname = op.join(basepath, 'test_video.wav')
    fs, data = wavfile.read(audio_fname)
    data = data.mean(axis=1)  # stereo audio but only need one source
    info = mne.create_info(['audio'], fs, ['stim'])
    raw = mne.io.RawArray(data[np.newaxis], info)
    fname = op.join(out_dir, 'test_video-raw.fif')
    raw.save(fname, overwrite=True)
    raw = _read_raw(fname, preload=True)
    audio = raw._data[0]
    candidates = _find_audio_candidates(audio=audio,
                                        sfreq=raw.info['sfreq'],
                                        max_len=max_len,
                                        zscore=zscore,
                                        verbose=verbose)
    np.testing.assert_array_equal(
        candidates,
        np.array([
            914454, 1915824, 2210042, 2970516, 4010037, 5011899, 6051706,
            7082591, 7651608, 8093410, 9099765, 10145123, 12010012, 13040741,
            14022720, 15038656, 16021487
        ]))
    behf = op.join(basepath, 'test_video_beh.tsv')
    pd_parser.parse_audio(raw, beh=behf, audio_ch_names=['audio'], zscore=10)
    annot, audio_ch_names, beh = _load_data(raw)
    np.testing.assert_array_almost_equal(
        annot.onset,
        np.array([
            19.05112457, 39.9129982, 61.88574982, 83.54243469, 104.41456604,
            126.07720947, 147.5539856, 168.61270142, 189.57843018,
            211.35673523, 250.20858765, 271.68209839, 292.14001465,
            313.30532837, 333.78097534
        ]))
    assert audio_ch_names == ['audio']
    assert beh['pd_parser_sample'] == \
        [914454, 1915824, 2970516, 4010037, 5011899, 6051706, 7082591,
         8093410, 9099765, 10145123, 12010012, 13040741, 14022720,
         15038656, 16021487]
    # test cli
    if platform.system() != 'Windows':
        assert call([
            f'parse_audio {fname} --beh {behf} '
            '--audio_ch_names audio --zscore 10 -o'
        ],
                    shell=True,
                    env=os.environ) == 0
示例#4
0
# make fake electrophysiology data
info = mne.create_info(['ch1', 'ch2', 'ch3'], raw.info['sfreq'],
                       ['seeg'] * 3)
raw2 = mne.io.RawArray(np.random.random((3, raw.times.size)) * 1e-6, info)
raw2.info['lowpass'] = raw.info['lowpass']  # these must match to combine
raw.add_channels([raw2])
# bids needs these data fields
raw.info['dig'] = None
raw.info['line_freq'] = 60

fname = op.join(out_dir, 'sub-1_task-mytask_raw.fif')
raw.save(fname)

# roundtrip so that raw is properly loaded from disk and has a filename
raw = _read_raw(fname)

###############################################################################
# Make behavior data
#
# We'll make a dictionary with lists for the events that are time-stamped when
# the photodiode was turned on and other events relative to those events.
# We'll add some noise to the time-stamps so that we can see how behavior
# might look in an experimental setting.
# Let's make a task where there is a fixation stimulus, then a go cue,
# and a then response as an example.

np.random.seed(12)
# add some noise to make it harder to align, use just over
# the exclusion of 0.03 to make some events excluded
offsets = np.random.random(n_events) * 0.035 - 0.0125
示例#5
0
def test_inputs():
    """Test that inputs for functions raise necessary errors."""
    out_dir = _TempDir()
    # test tsv
    beh = dict(test=[1, 2], test2=[2, 1])
    _to_tsv(op.join(out_dir, 'test.tsv'), beh)
    assert beh == _read_tsv(op.join(out_dir, 'test.tsv'))
    with pytest.raises(ValueError, match='Unable to read'):
        _read_tsv('test.foo')
    with pytest.raises(ValueError, match='Error in reading tsv'):
        with open(op.join(out_dir, 'test.tsv'), 'w') as _:
            pass
        _read_tsv(op.join(out_dir, 'test.tsv'))
    with pytest.raises(ValueError, match='contains no data'):
        with open(op.join(out_dir, 'test.tsv'), 'w') as f:
            f.write('test')
        _read_tsv(op.join(out_dir, 'test.tsv'))
    with pytest.raises(ValueError, match='different lengths'):
        with open(op.join(out_dir, 'test.tsv'), 'w') as f:
            f.write('test\ttest2\n1\t1\n1')
        _read_tsv(op.join(out_dir, 'test.tsv'))
    with pytest.raises(ValueError, match='Empty data file, no keys'):
        _to_tsv(op.join(out_dir, 'test.tsv'), dict())
    with pytest.raises(ValueError, match='Unable to write'):
        _to_tsv('foo.bar', dict(test=1))
    # test read
    raw, beh, events, corrupted_indices = pd_parser.simulate_pd_data()
    with pytest.raises(ValueError, match='must be loaded from disk'):
        _read_raw(raw, preload=True)
    raw.save(op.join(out_dir, 'test-raw.fif'), overwrite=True)
    with pytest.raises(ValueError, match='not recognized'):
        _read_raw('foo.bar')
    raw2 = _read_raw(op.join(out_dir, 'test-raw.fif'), preload=True)
    np.testing.assert_array_almost_equal(raw._data, raw2._data, decimal=3)
    # test load beh
    with pytest.raises(ValueError, match='not in the columns'):
        _load_beh(op.join(basepath, 'pd_events.tsv'), 'foo')
    # test get pd data
    with pytest.raises(ValueError, match='in raw channel names'):
        _get_data(raw, ['foo'])
    with pytest.raises(ValueError, match='in raw channel names'):
        _get_channel_data(raw, ['foo'])
    with pytest.raises(ValueError, match='baseline must be between 0 and 1'):
        pd_parser.parse_pd(raw, beh=beh, baseline=2)
    with pytest.raises(FileNotFoundError, match='fname does not exist'):
        _load_data('bar/foo.fif')
    with pytest.raises(ValueError, match='pd-parser data not found'):
        raw.save(op.join(out_dir, 'foo.fif'))
        _load_data(op.join(out_dir, 'foo.fif'))
    # test i/o
    raw3 = _read_raw(op.join(out_dir, 'test-raw.fif'))
    _save_data(raw3,
               events=np.arange(10),
               event_id='Fixation',
               ch_names=['pd'],
               beh=beh,
               add_events=False)
    with pytest.raises(ValueError, match='`pd_parser_sample` is not allowed'):
        _save_data(raw3,
                   events=events,
                   event_id='Fixation',
                   ch_names=['pd'],
                   beh=beh,
                   add_events=False)
    annot, pd_ch_names, beh2 = _load_data(raw3)
    raw.set_annotations(annot)
    events2, event_id = mne.events_from_annotations(raw)
    np.testing.assert_array_equal(events2[:, 0], np.arange(10))
    assert event_id == {'Fixation': 1}
    assert pd_ch_names == ['pd']
    np.testing.assert_array_equal(beh2['time'], beh['time'])
    np.testing.assert_array_equal(beh2['pd_parser_sample'], np.arange(10))
    # check overwrite
    behf = op.join(out_dir, 'behf-test.tsv')
    _to_tsv(behf, beh)
    with pytest.raises(ValueError, match='directory already exists'):
        pd_parser.parse_pd(raw3, beh=behf)
    pd_parser.parse_pd(raw3, beh=None, pd_ch_names=['pd'], overwrite=True)
    annot, pd_ch_names, beh = _load_data(raw3)
    raw3.set_annotations(annot)
    events2, _ = mne.events_from_annotations(raw3)
    assert all([event in events2[:, 0] for event in events[:, 0]])
    assert pd_ch_names == ['pd']
    assert beh is None
    # test overwrite
    raw = _read_raw(op.join(out_dir, 'test-raw.fif'))
    with pytest.raises(ValueError, match='data directory already exists'):
        _check_overwrite(raw, add_events=False, overwrite=False)