def locally_optimize(evaluations, store, goal_expression, domain, functions, negative, dynamic_streams, visualize, sampling_time=0): action_plan = store.best_plan if action_plan is None: return None print('\nPostprocessing | Cost: {} | Total Time: {:.3f}'.format(store.best_cost, store.elapsed_time())) # TODO: postprocess current skeletons as well task = task_from_domain_problem(domain, get_problem(evaluations, goal_expression, domain, unit_costs=False)) opt_stream_plan, opt_from_obj = recover_opt_stream_plan(evaluations, action_plan, task) opt_stream_plan += optimistic_process_streams(evaluations_from_stream_plan(evaluations, opt_stream_plan), functions) opt_action_plan = [(name, tuple(opt_from_obj.get(o, o) for o in args)) for name, args in action_plan] pddl_plan = [(name, tuple(map(pddl_from_object, args))) for name, args in opt_action_plan] stream_plan = recover_stream_plan(evaluations, goal_expression, domain, opt_stream_plan, pddl_plan, negative, unit_costs=False) stream_plan = get_synthetic_stream_plan(reorder_stream_plan(stream_plan), dynamic_streams) # TODO: need to make this just streams opt_evaluations = apply_streams(evaluations, stream_plan) opt_cost = get_plan_cost(opt_evaluations, opt_action_plan, domain, unit_costs=False) dump_plans(stream_plan, opt_action_plan, opt_cost) if visualize: log_plans(stream_plan, action_plan, None) create_visualizations(evaluations, stream_plan, None) store.start_time = time.time() store.max_cost = store.best_cost queue = SkeletonQueue(store, evaluations, goal_expression, domain) queue.new_skeleton(stream_plan, opt_action_plan, opt_cost) queue.greedily_process() queue.timed_process(sampling_time)
def solve_skeleton(evaluations={}, opt_solutions=[], max_time=INF, success_cost=0, max_complexity=INF, reorder=False, visualize=True): store = SolutionStore(evaluations=evaluations, max_time=max_time, success_cost=success_cost, verbose=True) skeleton_queue = SkeletonQueue(store, domain=None, disable=True) for opt_solution in opt_solutions: # TODO: add and then process later stream_plan, opt_plan, cost = opt_solution # stream_plan = replan_with_optimizers(evaluations, stream_plan, domain, externals) or stream_plan stream_plan = combine_optimizers(evaluations, stream_plan) # stream_plan = get_synthetic_stream_plan(stream_plan, # evaluations # [s for s in synthesizers if not s.post_only]) # stream_plan = recover_optimistic_outputs(stream_plan) if reorder: # TODO: this blows up memory wise for long stream plans stream_plan = reorder_stream_plan(store, stream_plan) num_optimistic = sum(r.optimistic for r in stream_plan) if stream_plan else 0 action_plan = opt_plan.action_plan if is_plan(opt_plan) else opt_plan print('Stream plan ({}, {}, {:.3f}): {}\nAction plan ({}, {:.3f}): {}'.format( get_length(stream_plan), num_optimistic, compute_plan_effort(stream_plan), stream_plan, get_length(action_plan), cost, str_from_plan(action_plan))) if is_plan(stream_plan) and visualize: num_iterations = 0 log_plans(stream_plan, action_plan, num_iterations) #create_visualizations(evaluations, stream_plan, num_iterations) visualize_stream_plan(stream_plan) ################ # # optimizer_plan = replan_with_optimizers(evaluations, stream_plan, domain, optimizers) # optimizer_plan = None # if optimizer_plan is not None: # # TODO: post process a bound plan # print('Optimizer plan ({}, {:.3f}): {}'.format( # get_length(optimizer_plan), compute_plan_effort(optimizer_plan), optimizer_plan)) # skeleton_queue.new_skeleton(optimizer_plan, opt_plan, cost) # TODO: these are quite different #skeleton_queue.process(stream_plan, opt_plan, cost, complexity_limit=INF, max_time=INF) skeleton_queue.process(stream_plan, opt_plan, cost, complexity_limit=max_complexity, max_time=0) return store.extract_solution()
def solve_abstract(problem, constraints=PlanConstraints(), stream_info={}, replan_actions=set(), unit_costs=False, success_cost=INF, max_time=INF, max_iterations=INF, max_memory=INF, initial_complexity=0, complexity_step=1, max_complexity=INF, max_skeletons=INF, search_sample_ratio=0, bind=True, max_failures=0, unit_efforts=False, max_effort=INF, effort_weight=None, reorder=True, visualize=False, verbose=True, **search_kwargs): """ Solves a PDDLStream problem by first planning with optimistic stream outputs and then querying streams :param problem: a PDDLStream problem :param constraints: PlanConstraints on the set of legal solutions :param stream_info: a dictionary from stream name to StreamInfo altering how individual streams are handled :param replan_actions: the actions declared to induce replanning for the purpose of deferred stream evaluation :param unit_costs: use unit action costs rather than numeric costs :param success_cost: the exclusive (strict) upper bound on plan cost to successfully terminate :param max_time: the maximum runtime :param max_iterations: the maximum number of search iterations :param max_memory: the maximum amount of memory :param initial_complexity: the initial stream complexity limit :param complexity_step: the increase in the stream complexity limit per iteration :param max_complexity: the maximum stream complexity limit :param max_skeletons: the maximum number of plan skeletons (max_skeletons=None indicates not adaptive) :param search_sample_ratio: the desired ratio of sample time / search time when max_skeletons!=None :param bind: if True, propagates parameter bindings when max_skeletons=None :param max_failures: the maximum number of stream failures before switching phases when max_skeletons=None :param unit_efforts: use unit stream efforts rather than estimated numeric efforts :param max_effort: the maximum amount of stream effort :param effort_weight: a multiplier for stream effort compared to action costs :param reorder: if True, reorder stream plans to minimize the expected sampling overhead :param visualize: if True, draw the constraint network and stream plan as a graphviz file :param verbose: if True, print the result of each stream application :param search_kwargs: keyword args for the search subroutine :return: a tuple (plan, cost, evaluations) where plan is a sequence of actions (or None), cost is the cost of the plan (INF if no plan), and evaluations is init expanded using stream applications """ # TODO: select whether to search or sample based on expected success rates # TODO: no optimizers during search with relaxed_stream_plan # TODO: locally optimize only after a solution is identified # TODO: replan with a better search algorithm after feasible # TODO: change the search algorithm and unit costs based on the best cost use_skeletons = (max_skeletons is not None) #assert implies(use_skeletons, search_sample_ratio > 0) eager_disabled = (effort_weight is None ) # No point if no stream effort biasing num_iterations = eager_calls = 0 complexity_limit = initial_complexity evaluations, goal_exp, domain, externals = parse_problem( problem, stream_info=stream_info, constraints=constraints, unit_costs=unit_costs, unit_efforts=unit_efforts) identify_non_producers(externals) enforce_simultaneous(domain, externals) compile_fluent_streams(domain, externals) # TODO: make effort_weight be a function of the current cost # if (effort_weight is None) and not has_costs(domain): # effort_weight = 1 load_stream_statistics(externals) if visualize and not has_pygraphviz(): visualize = False print( 'Warning, visualize=True requires pygraphviz. Setting visualize=False' ) if visualize: reset_visualizations() streams, functions, negative, optimizers = partition_externals( externals, verbose=verbose) eager_externals = list(filter(lambda e: e.info.eager, externals)) positive_externals = streams + functions + optimizers has_optimizers = bool(optimizers) # TODO: deprecate assert implies(has_optimizers, use_skeletons) ################ store = SolutionStore(evaluations, max_time, success_cost, verbose, max_memory=max_memory) skeleton_queue = SkeletonQueue(store, domain, disable=not has_optimizers) disabled = set() # Max skeletons after a solution while (not store.is_terminated()) and ( num_iterations < max_iterations) and (complexity_limit <= max_complexity): num_iterations += 1 eager_instantiator = Instantiator( eager_externals, evaluations) # Only update after an increase? if eager_disabled: push_disabled(eager_instantiator, disabled) if eager_externals: eager_calls += process_stream_queue( eager_instantiator, store, complexity_limit=complexity_limit, verbose=verbose) ################ print( '\nIteration: {} | Complexity: {} | Skeletons: {} | Skeleton Queue: {} | Disabled: {} | Evaluations: {} | ' 'Eager Calls: {} | Cost: {:.3f} | Search Time: {:.3f} | Sample Time: {:.3f} | Total Time: {:.3f}' .format(num_iterations, complexity_limit, len(skeleton_queue.skeletons), len(skeleton_queue), len(disabled), len(evaluations), eager_calls, store.best_cost, store.search_time, store.sample_time, store.elapsed_time())) optimistic_solve_fn = get_optimistic_solve_fn( goal_exp, domain, negative, replan_actions=replan_actions, reachieve=use_skeletons, max_cost=min(store.best_cost, constraints.max_cost), max_effort=max_effort, effort_weight=effort_weight, **search_kwargs) # TODO: just set unit effort for each stream beforehand if (max_skeletons is None) or (len(skeleton_queue.skeletons) < max_skeletons): disabled_axioms = create_disabled_axioms( skeleton_queue) if has_optimizers else [] if disabled_axioms: domain.axioms.extend(disabled_axioms) stream_plan, opt_plan, cost = iterative_plan_streams( evaluations, positive_externals, optimistic_solve_fn, complexity_limit, max_effort=max_effort) for axiom in disabled_axioms: domain.axioms.remove(axiom) else: stream_plan, opt_plan, cost = OptSolution( INFEASIBLE, INFEASIBLE, INF) # TODO: apply elsewhere ################ #stream_plan = replan_with_optimizers(evaluations, stream_plan, domain, externals) or stream_plan stream_plan = combine_optimizers(evaluations, stream_plan) #stream_plan = get_synthetic_stream_plan(stream_plan, # evaluations # [s for s in synthesizers if not s.post_only]) #stream_plan = recover_optimistic_outputs(stream_plan) if reorder: # TODO: this blows up memory wise for long stream plans stream_plan = reorder_stream_plan(store, stream_plan) num_optimistic = sum(r.optimistic for r in stream_plan) if stream_plan else 0 action_plan = opt_plan.action_plan if is_plan(opt_plan) else opt_plan print('Stream plan ({}, {}, {:.3f}): {}\nAction plan ({}, {:.3f}): {}'. format(get_length(stream_plan), num_optimistic, compute_plan_effort(stream_plan), stream_plan, get_length(action_plan), cost, str_from_plan(action_plan))) if is_plan(stream_plan) and visualize: log_plans(stream_plan, action_plan, num_iterations) create_visualizations(evaluations, stream_plan, num_iterations) ################ if (stream_plan is INFEASIBLE) and (not eager_instantiator) and ( not skeleton_queue) and (not disabled): break if not is_plan(stream_plan): print('No plan: increasing complexity from {} to {}'.format( complexity_limit, complexity_limit + complexity_step)) complexity_limit += complexity_step if not eager_disabled: reenable_disabled(evaluations, domain, disabled) #print(stream_plan_complexity(evaluations, stream_plan)) if not use_skeletons: process_stream_plan(store, domain, disabled, stream_plan, opt_plan, cost, bind=bind, max_failures=max_failures) continue ################ #optimizer_plan = replan_with_optimizers(evaluations, stream_plan, domain, optimizers) optimizer_plan = None if optimizer_plan is not None: # TODO: post process a bound plan print('Optimizer plan ({}, {:.3f}): {}'.format( get_length(optimizer_plan), compute_plan_effort(optimizer_plan), optimizer_plan)) skeleton_queue.new_skeleton(optimizer_plan, opt_plan, cost) allocated_sample_time = (search_sample_ratio * store.search_time) - store.sample_time \ if len(skeleton_queue.skeletons) <= max_skeletons else INF if skeleton_queue.process(stream_plan, opt_plan, cost, complexity_limit, allocated_sample_time) is INFEASIBLE: break ################ summary = store.export_summary() summary.update({ 'iterations': num_iterations, 'complexity': complexity_limit, 'skeletons': len(skeleton_queue.skeletons), }) print('Summary: {}'.format(str_from_object( summary, ndigits=3))) # TODO: return the summary write_stream_statistics(externals, verbose) return store.extract_solution()
def constraint_satisfaction(stream_pddl, stream_map, init, terms, stream_info={}, costs=True, max_cost=INF, success_cost=INF, max_time=INF, unit_efforts=False, max_effort=INF, max_skeletons=INF, search_sample_ratio=1, verbose=True, **search_args): # Approaches # 1) Existential quantification of bindings in goal conditions # 2) Backtrack useful streams and then schedule. Create arbitrary outputs for not mentioned. # 3) Construct all useful streams and then associate outputs with bindings # Useful stream must satisfy at least one fact. How should these assignments be propagated though? # Make an action that maps each stream result to unbound values? # TODO: include functions again for cost-sensitive satisfaction # TODO: convert init into streams to bind certain facts # TODO: investigate constraint satisfaction techniques for binding instead # TODO: could also instantiate all possible free parameters even if not useful # TODO: effort that is a function of the number of output parameters (degrees of freedom) # TODO: use a CSP solver instead of a planner internally # TODO: max_iterations? if not terms: return {}, 0, init constraints, negated, functions = partition_facts(set(map(obj_from_existential_expression, terms))) if not costs: functions = [] evaluations = evaluations_from_init(init) goal_facts = set(filter(lambda f: evaluation_from_fact(f) not in evaluations, constraints)) free_parameters = sorted(get_parameters(goal_facts)) print('Parameters:', free_parameters) externals = parse_stream_pddl(stream_pddl, stream_map, stream_info, unit_efforts=unit_efforts) stream_results = extract_streams(evaluations, externals, goal_facts) function_plan = plan_functions(negated + functions, externals) plan_skeleton = [Assignment(free_parameters)] cost = get_optimistic_cost(function_plan) if max_cost < cost: return None, INF, init # TODO: detect connected components # TODO: eagerly evaluate fully bound constraints # TODO: consider other results if this fails domain = create_domain(goal_facts) init_evaluations = evaluations.copy() store = SolutionStore(evaluations, max_time=max_time, success_cost=success_cost, verbose=verbose) queue = SkeletonQueue(store, domain, disable=False) num_iterations = search_time = sample_time = 0 planner = 'ff-astar' # TODO: toggle within reschedule_stream_plan #last_clusters = set() #last_success = True while not store.is_terminated(): num_iterations += 1 start_time = time.time() print('\nIteration: {} | Skeletons: {} | Skeleton Queue: {} | Evaluations: {} | ' 'Cost: {:.3f} | Search Time: {:.3f} | Sample Time: {:.3f} | Total Time: {:.3f}'.format( num_iterations, len(queue.skeletons), len(queue), len(evaluations), store.best_cost, search_time, sample_time, store.elapsed_time())) external_plan = None if len(queue.skeletons) < max_skeletons: domain.axioms[:] = create_disabled_axioms(queue, use_parameters=False) #dominated = are_domainated(last_clusters, clusters) #last_clusters = clusters #if last_success or not dominated: # Could also keep a history of results stream_plan = reschedule_stream_plan(init_evaluations, goal_facts, domain, stream_results, unique_binding=True, unsatisfiable=True, max_effort=max_effort, planner=planner, **search_args) if stream_plan is not None: external_plan = reorder_stream_plan(combine_optimizers( init_evaluations, stream_plan + list(function_plan))) print('Stream plan ({}, {:.3f}): {}'.format( get_length(external_plan), compute_plan_effort(external_plan), external_plan)) last_success = (external_plan is not None) search_time += elapsed_time(start_time) # Once a constraint added for a skeleton, it should only be relaxed start_time = time.time() if last_success: # Only works if create_disable_axioms never changes allocated_sample_time = (search_sample_ratio * search_time) - sample_time else: allocated_sample_time = INF queue.process(external_plan, plan_skeleton, cost=cost, complexity_limit=INF, max_time=allocated_sample_time) sample_time += elapsed_time(start_time) if not last_success and not queue: break # TODO: exhaustively compute all plan skeletons and add to queue within the focused algorithm write_stream_statistics(externals, verbose) action_plan, cost, facts = revert_solution(store.best_plan, store.best_cost, evaluations) bindings = bindings_from_plan(plan_skeleton, action_plan) return bindings, cost, facts
def locally_optimize(evaluations, store, goal_expression, domain, functions, negative, dynamic_streams): action_plan = store.best_plan if action_plan is None: return None print('\nPostprocessing') # TODO: postprocess current skeleton as well task = task_from_domain_problem( domain, get_problem(evaluations, goal_expression, domain, unit_costs=False)) plan_instances = get_action_instances( task, action_plan) + [get_goal_instance(task.goal)] replace_derived(task, set(), plan_instances) preimage = filter(lambda a: not a.negated, plan_preimage(plan_instances, [])) opt_stream_plan = [] opt_from_obj = {} for stream_result in extract_order(evaluations, preimage): input_objects = tuple( opt_from_obj.get(o, o) for o in stream_result.instance.input_objects) instance = stream_result.instance.external.get_instance(input_objects) #assert(not instance.disabled) instance.disabled = False opt_results = instance.next_optimistic() if not opt_results: continue opt_result = opt_results[0] opt_stream_plan.append(opt_result) for obj, opt in zip(stream_result.output_objects, opt_result.output_objects): opt_from_obj[obj] = opt opt_stream_plan += optimistic_process_streams( evaluations_from_stream_plan(evaluations, opt_stream_plan), functions) opt_action_plan = [(name, tuple(opt_from_obj.get(o, o) for o in args)) for name, args in action_plan] pddl_plan = [(name, map(pddl_from_object, args)) for name, args in opt_action_plan] stream_plan = recover_stream_plan(evaluations, goal_expression, domain, opt_stream_plan, pddl_plan, negative, unit_costs=False) stream_plan = reorder_stream_plan(stream_plan) stream_plan = get_synthetic_stream_plan(stream_plan, dynamic_streams) print('Stream plan: {}\n' 'Action plan: {}'.format(stream_plan, opt_action_plan)) opt_cost = 0 # TODO: compute this cost for real store.start_time = time.time() store.max_cost = store.best_cost #sampling_time = 10 sampling_time = 0 queue = SkeletonQueue(evaluations, store) queue.new_skeleton(stream_plan, opt_action_plan, opt_cost) queue.greedily_process(sampling_time)
def solve_focused(problem, stream_info={}, action_info={}, synthesizers=[], max_time=INF, max_cost=INF, unit_costs=False, unit_efforts=False, effort_weight=None, eager_layers=1, search_sampling_ratio=1, use_skeleton=True, visualize=False, verbose=True, postprocess=False, **search_kwargs): """ Solves a PDDLStream problem by first hypothesizing stream outputs and then determining whether they exist :param problem: a PDDLStream problem :param action_info: a dictionary from stream name to ActionInfo for planning and execution :param stream_info: a dictionary from stream name to StreamInfo altering how individual streams are handled :param synthesizers: a list of StreamSynthesizer objects :param max_time: the maximum amount of time to apply streams :param max_cost: a strict upper bound on plan cost :param unit_costs: use unit costs rather than numeric costs :param effort_weight: a multiplier for stream effort compared to action costs :param eager_layers: the number of eager stream application layers per iteration :param search_sampling_ratio: the desired ratio of search time / sample time :param visualize: if True, it draws the constraint network and stream plan as a graphviz file :param verbose: if True, this prints the result of each stream application :param postprocess: postprocess the stream plan to find a better solution :param search_kwargs: keyword args for the search subroutine :return: a tuple (plan, cost, evaluations) where plan is a sequence of actions (or None), cost is the cost of the plan, and evaluations is init but expanded using stream applications """ # TODO: return to just using the highest level samplers at the start # TODO: select whether to search or sample based on expected success rates solve_stream_plan_fn = relaxed_stream_plan #solve_stream_plan_fn = relaxed_stream_plan if effort_weight is None else simultaneous_stream_plan #solve_stream_plan_fn = sequential_stream_plan # simultaneous_stream_plan | sequential_stream_plan #solve_stream_plan_fn = incremental_stream_plan # incremental_stream_plan | exhaustive_stream_plan # TODO: warning check if using simultaneous_stream_plan or sequential_stream_plan with non-eager functions # TODO: no optimizers during search with relaxed_stream_plan num_iterations = 0 search_time = sample_time = 0 store = SolutionStore(max_time, max_cost, verbose) # TODO: include other info here? evaluations, goal_expression, domain, externals = parse_problem( problem, stream_info) unit_costs |= not has_costs(domain) full_action_info = get_action_info(action_info) load_stream_statistics(externals + synthesizers) if visualize and not has_pygraphviz(): visualize = False print( 'Warning, visualize=True requires pygraphviz. Setting visualize=False' ) if visualize: reset_visualizations() eager_externals = list(filter(lambda e: e.info.eager, externals)) streams, functions, negative = partition_externals(externals) if verbose: print('Streams: {}\nFunctions: {}\nNegated: {}'.format( streams, functions, negative)) queue = SkeletonQueue(store, evaluations, goal_expression, domain) disabled = set() while not store.is_terminated(): start_time = time.time() num_iterations += 1 print( '\nIteration: {} | Queue: {} | Evaluations: {} | Cost: {} ' '| Search Time: {:.3f} | Sample Time: {:.3f} | Total Time: {:.3f}'. format(num_iterations, len(queue), len(evaluations), store.best_cost, search_time, sample_time, store.elapsed_time())) layered_process_stream_queue( Instantiator(evaluations, eager_externals), evaluations, store, eager_layers) solve_stream_plan = lambda sr: solve_stream_plan_fn( evaluations, goal_expression, domain, sr, negative, max_cost=store. best_cost, #max_cost=min(store.best_cost, max_cost), unit_costs=unit_costs, unit_efforts=unit_efforts, effort_weight=effort_weight, **search_kwargs) #combined_plan, cost = solve_stream_plan(optimistic_process_streams(evaluations, streams + functions)) combined_plan, cost = iterative_solve_stream_plan( evaluations, streams, functions, solve_stream_plan) if action_info: combined_plan = reorder_combined_plan(evaluations, combined_plan, full_action_info, domain) print('Combined plan: {}'.format(combined_plan)) stream_plan, action_plan = separate_plan(combined_plan, full_action_info) #stream_plan = replan_with_optimizers(evaluations, stream_plan, domain, externals) stream_plan = combine_optimizers(evaluations, stream_plan) #stream_plan = get_synthetic_stream_plan(stream_plan, # evaluations # [s for s in synthesizers if not s.post_only]) stream_plan = reorder_stream_plan( stream_plan) # TODO: is this redundant when combined_plan? dump_plans(stream_plan, action_plan, cost) if (stream_plan is not None) and visualize: log_plans(stream_plan, action_plan, num_iterations) create_visualizations(evaluations, stream_plan, num_iterations) search_time += elapsed_time(start_time) # TODO: more generally just add the original plan skeleton to the plan # TODO: cutoff search exploration time at a certain point start_time = time.time() allocated_sample_time = search_sampling_ratio * search_time - sample_time if use_skeleton: terminate = not process_skeleton_queue(store, queue, stream_plan, action_plan, cost, allocated_sample_time) else: terminate = not process_disabled( store, evaluations, domain, disabled, stream_plan, action_plan, cost, allocated_sample_time, effort_weight is not None) sample_time += elapsed_time(start_time) if terminate: break if postprocess and (not unit_costs): # and synthesizers locally_optimize(evaluations, store, goal_expression, domain, functions, negative, synthesizers, visualize) write_stream_statistics(externals + synthesizers, verbose) return revert_solution(store.best_plan, store.best_cost, evaluations)
def solve_focused(problem, stream_info={}, action_info={}, synthesizers=[], max_time=INF, max_cost=INF, unit_costs=None, effort_weight=None, eager_layers=1, visualize=False, verbose=True, postprocess=False, **search_kwargs): """ Solves a PDDLStream problem by first hypothesizing stream outputs and then determining whether they exist :param problem: a PDDLStream problem :param action_info: a dictionary from stream name to ActionInfo for planning and execution :param stream_info: a dictionary from stream name to StreamInfo altering how individual streams are handled :param max_time: the maximum amount of time to apply streams :param max_cost: a strict upper bound on plan cost :param effort_weight: a multiplier for stream effort compared to action costs :param eager_layers: the number of eager stream application layers per iteration :param visualize: if True, it draws the constraint network and stream plan as a graphviz file :param verbose: if True, this prints the result of each stream application :param search_kwargs: keyword args for the search subroutine :return: a tuple (plan, cost, evaluations) where plan is a sequence of actions (or None), cost is the cost of the plan, and evaluations is init but expanded using stream applications """ # TODO: return to just using the highest level samplers at the start search_sampling_ratio = 1 solve_stream_plan_fn = relaxed_stream_plan if effort_weight is None else simultaneous_stream_plan # TODO: warning check if using simultaneous_stream_plan or sequential_stream_plan with non-eager functions num_iterations = 0 search_time = sample_time = 0 store = SolutionStore(max_time, max_cost, verbose) # TODO: include other info here? evaluations, goal_expression, domain, stream_name, externals = parse_problem( problem, stream_info) compile_to_exogenous(evaluations, domain, externals) if unit_costs is None: unit_costs = not has_costs(domain) full_action_info = get_action_info(action_info) load_stream_statistics(stream_name, externals + synthesizers) if visualize: clear_visualizations() # TODO: somehow Functions became no longer eager? eager_externals = list( filter(lambda e: e.info.eager or type(e) == Function, externals)) streams, functions, negative = partition_externals(externals) queue = SkeletonQueue(store, evaluations) # TODO: decide max_sampling_time based on total search_time or likelihood estimates # TODO: switch to searching if believe chance of search better than sampling while not store.is_terminated(): num_iterations += 1 print( '\nIteration: {} | Queue: {} | Evaluations: {} | Cost: {} ' '| Search Time: {:.3f} | Sample Time: {:.3f} | Total Time: {:.3f}'. format(num_iterations, len(queue), len(evaluations), store.best_cost, search_time, sample_time, store.elapsed_time())) start_time = time.time() layered_process_stream_queue( Instantiator(evaluations, eager_externals), evaluations, store, eager_layers) solve_stream_plan = lambda sr: solve_stream_plan_fn( evaluations, goal_expression, domain, sr, negative, max_cost=store.best_cost, #max_cost=min(store.best_cost, max_cost), unit_costs=unit_costs, **search_kwargs) #combined_plan, cost = solve_stream_plan(populate_results(evaluations, streams + functions)) combined_plan, cost = iterative_solve_stream_plan( evaluations, streams, functions, solve_stream_plan) if action_info: combined_plan = reorder_combined_plan(evaluations, combined_plan, full_action_info, domain) print('Combined plan: {}'.format(combined_plan)) stream_plan, action_plan = separate_plan(combined_plan, full_action_info) stream_plan = reorder_stream_plan( stream_plan) # TODO: is this strictly redundant? stream_plan = get_synthetic_stream_plan(stream_plan, synthesizers) print('Stream plan: {}\n' 'Action plan: {}'.format(stream_plan, action_plan)) search_time += elapsed_time(start_time) start_time = time.time() if stream_plan is None: if not queue: break queue.process_until_success() #queue.fairly_process() else: if visualize: create_visualizations(evaluations, stream_plan, num_iterations) queue.new_skeleton(stream_plan, action_plan, cost) queue.greedily_process() sample_time += elapsed_time(start_time) start_time = time.time() queue.timed_process(search_sampling_ratio * search_time - sample_time) sample_time += elapsed_time(start_time) if postprocess and (not unit_costs): locally_optimize(evaluations, store, goal_expression, domain, functions, negative, synthesizers) write_stream_statistics(stream_name, externals + synthesizers, verbose) return revert_solution(store.best_plan, store.best_cost, evaluations)
def solve_focused(problem, constraints=PlanConstraints(), stream_info={}, action_info={}, synthesizers=[], max_time=INF, max_iterations=INF, max_skeletons=INF, unit_costs=False, success_cost=INF, complexity_step=1, unit_efforts=False, max_effort=INF, effort_weight=None, reorder=True, search_sample_ratio=0, visualize=False, verbose=True, **search_kwargs): """ Solves a PDDLStream problem by first hypothesizing stream outputs and then determining whether they exist :param problem: a PDDLStream problem :param constraints: PlanConstraints on the set of legal solutions :param stream_info: a dictionary from stream name to StreamInfo altering how individual streams are handled :param action_info: a dictionary from stream name to ActionInfo for planning and execution :param synthesizers: a list of StreamSynthesizer objects :param max_time: the maximum amount of time to apply streams :param max_iterations: the maximum number of search iterations :param max_iterations: the maximum number of plan skeletons to consider :param unit_costs: use unit action costs rather than numeric costs :param success_cost: an exclusive (strict) upper bound on plan cost to terminate :param unit_efforts: use unit stream efforts rather than estimated numeric efforts :param complexity_step: the increase in the effort limit after each failure :param max_effort: the maximum amount of effort to consider for streams :param effort_weight: a multiplier for stream effort compared to action costs :param reorder: if True, stream plans are reordered to minimize the expected sampling overhead :param search_sample_ratio: the desired ratio of search time / sample time :param visualize: if True, it draws the constraint network and stream plan as a graphviz file :param verbose: if True, this prints the result of each stream application :param search_kwargs: keyword args for the search subroutine :return: a tuple (plan, cost, evaluations) where plan is a sequence of actions (or None), cost is the cost of the plan, and evaluations is init but expanded using stream applications """ # TODO: select whether to search or sample based on expected success rates # TODO: no optimizers during search with relaxed_stream_plan num_iterations = search_time = sample_time = eager_calls = 0 complexity_limit = float(INITIAL_COMPLEXITY) eager_disabled = effort_weight is None # No point if no stream effort biasing evaluations, goal_exp, domain, externals = parse_problem( problem, stream_info=stream_info, constraints=constraints, unit_costs=unit_costs, unit_efforts=unit_efforts) store = SolutionStore(evaluations, max_time, success_cost, verbose) full_action_info = get_action_info(action_info) load_stream_statistics(externals + synthesizers) if visualize and not has_pygraphviz(): visualize = False print('Warning, visualize=True requires pygraphviz. Setting visualize=False') if visualize: reset_visualizations() streams, functions, negative = partition_externals(externals, verbose=verbose) eager_externals = list(filter(lambda e: e.info.eager, externals)) skeleton_queue = SkeletonQueue(store, goal_exp, domain) disabled = set() while (not store.is_terminated()) and (num_iterations < max_iterations): start_time = time.time() num_iterations += 1 eager_instantiator = Instantiator(eager_externals, evaluations) # Only update after an increase? if eager_disabled: push_disabled(eager_instantiator, disabled) eager_calls += process_stream_queue(eager_instantiator, store, complexity_limit=complexity_limit, verbose=verbose) print('\nIteration: {} | Complexity: {} | Skeletons: {} | Skeleton Queue: {} | Disabled: {} | Evaluations: {} | ' 'Eager Calls: {} | Cost: {:.3f} | Search Time: {:.3f} | Sample Time: {:.3f} | Total Time: {:.3f}'.format( num_iterations, complexity_limit, len(skeleton_queue.skeletons), len(skeleton_queue), len(disabled), len(evaluations), eager_calls, store.best_cost, search_time, sample_time, store.elapsed_time())) optimistic_solve_fn = get_optimistic_solve_fn(goal_exp, domain, negative, max_cost=min(store.best_cost, constraints.max_cost), unit_efforts=unit_efforts, max_effort=max_effort, effort_weight=effort_weight, **search_kwargs) if (max_skeletons is not None) and (len(skeleton_queue.skeletons) < max_skeletons): combined_plan, cost = iterative_plan_streams(evaluations, externals, optimistic_solve_fn, complexity_limit, unit_efforts=unit_efforts, max_effort=max_effort) else: combined_plan, cost = INFEASIBLE, INF if action_info: combined_plan = reorder_combined_plan(evaluations, combined_plan, full_action_info, domain) print('Combined plan: {}'.format(combined_plan)) stream_plan, action_plan = separate_plan(combined_plan, full_action_info) #stream_plan = replan_with_optimizers(evaluations, stream_plan, domain, externals) stream_plan = combine_optimizers(evaluations, stream_plan) #stream_plan = get_synthetic_stream_plan(stream_plan, # evaluations # [s for s in synthesizers if not s.post_only]) if reorder: stream_plan = reorder_stream_plan(stream_plan) # This may be redundant when using reorder_combined_plan print('Stream plan ({}, {:.3f}): {}\nAction plan ({}, {:.3f}): {}'.format( get_length(stream_plan), compute_plan_effort(stream_plan), stream_plan, get_length(action_plan), cost, str_from_plan(action_plan))) if is_plan(stream_plan) and visualize: log_plans(stream_plan, action_plan, num_iterations) create_visualizations(evaluations, stream_plan, num_iterations) search_time += elapsed_time(start_time) if (stream_plan is INFEASIBLE) and (not eager_instantiator) and (not skeleton_queue) and (not disabled): break start_time = time.time() if not is_plan(stream_plan): complexity_limit += complexity_step if not eager_disabled: reenable_disabled(evaluations, domain, disabled) elif not stream_plan: store.add_plan(action_plan, cost) if max_skeletons is None: process_stream_plan(store, domain, disabled, stream_plan) else: allocated_sample_time = (search_sample_ratio * search_time) - sample_time skeleton_queue.process(stream_plan, action_plan, cost, complexity_limit, allocated_sample_time) sample_time += elapsed_time(start_time) write_stream_statistics(externals + synthesizers, verbose) return store.extract_solution()
def solve_focused(problem, constraints=PlanConstraints(), stream_info={}, replan_actions=set(), max_time=INF, max_iterations=INF, initial_complexity=0, complexity_step=1, max_skeletons=INF, bind=True, max_failures=0, unit_costs=False, success_cost=INF, unit_efforts=False, max_effort=INF, effort_weight=None, reorder=True, search_sample_ratio=0, visualize=False, verbose=True, **search_kwargs): """ Solves a PDDLStream problem by first hypothesizing stream outputs and then determining whether they exist :param problem: a PDDLStream problem :param constraints: PlanConstraints on the set of legal solutions :param stream_info: a dictionary from stream name to StreamInfo altering how individual streams are handled :param max_time: the maximum amount of time to apply streams :param max_iterations: the maximum number of search iterations :param max_skeletons: the maximum number of plan skeletons to consider :param unit_costs: use unit action costs rather than numeric costs :param success_cost: an exclusive (strict) upper bound on plan cost to terminate :param unit_efforts: use unit stream efforts rather than estimated numeric efforts :param initial_complexity: the initial effort limit :param complexity_step: the increase in the effort limit after each failure :param max_effort: the maximum amount of effort to consider for streams :param effort_weight: a multiplier for stream effort compared to action costs :param reorder: if True, stream plans are reordered to minimize the expected sampling overhead :param search_sample_ratio: the desired ratio of search time / sample time :param visualize: if True, it draws the constraint network and stream plan as a graphviz file :param verbose: if True, this prints the result of each stream application :param search_kwargs: keyword args for the search subroutine :return: a tuple (plan, cost, evaluations) where plan is a sequence of actions (or None), cost is the cost of the plan, and evaluations is init but expanded using stream applications """ # TODO: select whether to search or sample based on expected success rates # TODO: no optimizers during search with relaxed_stream_plan # TODO: locally optimize only after a solution is identified # TODO: replan with a better search algorithm after feasible num_iterations = search_time = sample_time = eager_calls = 0 complexity_limit = initial_complexity # TODO: make effort_weight be a function of the current cost # TODO: change the search algorithm and unit costs based on the best cost eager_disabled = effort_weight is None # No point if no stream effort biasing evaluations, goal_exp, domain, externals = parse_problem( problem, stream_info=stream_info, constraints=constraints, unit_costs=unit_costs, unit_efforts=unit_efforts) store = SolutionStore(evaluations, max_time, success_cost, verbose) load_stream_statistics(externals) if visualize and not has_pygraphviz(): visualize = False print( 'Warning, visualize=True requires pygraphviz. Setting visualize=False' ) if visualize: reset_visualizations() streams, functions, negative, optimizers = partition_externals( externals, verbose=verbose) eager_externals = list(filter(lambda e: e.info.eager, externals)) use_skeletons = max_skeletons is not None has_optimizers = bool(optimizers) assert implies(has_optimizers, use_skeletons) skeleton_queue = SkeletonQueue(store, domain, disable=not has_optimizers) disabled = set() # Max skeletons after a solution while (not store.is_terminated()) and (num_iterations < max_iterations): start_time = time.time() num_iterations += 1 eager_instantiator = Instantiator( eager_externals, evaluations) # Only update after an increase? if eager_disabled: push_disabled(eager_instantiator, disabled) eager_calls += process_stream_queue(eager_instantiator, store, complexity_limit=complexity_limit, verbose=verbose) print( '\nIteration: {} | Complexity: {} | Skeletons: {} | Skeleton Queue: {} | Disabled: {} | Evaluations: {} | ' 'Eager Calls: {} | Cost: {:.3f} | Search Time: {:.3f} | Sample Time: {:.3f} | Total Time: {:.3f}' .format(num_iterations, complexity_limit, len(skeleton_queue.skeletons), len(skeleton_queue), len(disabled), len(evaluations), eager_calls, store.best_cost, search_time, sample_time, store.elapsed_time())) optimistic_solve_fn = get_optimistic_solve_fn( goal_exp, domain, negative, replan_actions=replan_actions, reachieve=use_skeletons, max_cost=min(store.best_cost, constraints.max_cost), max_effort=max_effort, effort_weight=effort_weight, **search_kwargs) # TODO: just set unit effort for each stream beforehand if (max_skeletons is None) or (len(skeleton_queue.skeletons) < max_skeletons): disabled_axioms = create_disabled_axioms( skeleton_queue) if has_optimizers else [] if disabled_axioms: domain.axioms.extend(disabled_axioms) stream_plan, action_plan, cost = iterative_plan_streams( evaluations, (streams + functions + optimizers), optimistic_solve_fn, complexity_limit, max_effort=max_effort) for axiom in disabled_axioms: domain.axioms.remove(axiom) else: stream_plan, action_plan, cost = INFEASIBLE, INFEASIBLE, INF #stream_plan = replan_with_optimizers(evaluations, stream_plan, domain, externals) or stream_plan stream_plan = combine_optimizers(evaluations, stream_plan) #stream_plan = get_synthetic_stream_plan(stream_plan, # evaluations # [s for s in synthesizers if not s.post_only]) if reorder: stream_plan = reorder_stream_plan( stream_plan ) # This may be redundant when using reorder_combined_plan num_optimistic = sum(r.optimistic for r in stream_plan) if stream_plan else 0 print('Stream plan ({}, {}, {:.3f}): {}\nAction plan ({}, {:.3f}): {}'. format(get_length(stream_plan), num_optimistic, compute_plan_effort(stream_plan), stream_plan, get_length(action_plan), cost, str_from_plan(action_plan))) if is_plan(stream_plan) and visualize: log_plans(stream_plan, action_plan, num_iterations) create_visualizations(evaluations, stream_plan, num_iterations) search_time += elapsed_time(start_time) if (stream_plan is INFEASIBLE) and (not eager_instantiator) and ( not skeleton_queue) and (not disabled): break start_time = time.time() if not is_plan(stream_plan): complexity_limit += complexity_step if not eager_disabled: reenable_disabled(evaluations, disabled) #print(stream_plan_complexity(evaluations, stream_plan)) if use_skeletons: #optimizer_plan = replan_with_optimizers(evaluations, stream_plan, domain, optimizers) optimizer_plan = None if optimizer_plan is not None: # TODO: post process a bound plan print('Optimizer plan ({}, {:.3f}): {}'.format( get_length(optimizer_plan), compute_plan_effort(optimizer_plan), optimizer_plan)) skeleton_queue.new_skeleton(optimizer_plan, action_plan, cost) allocated_sample_time = (search_sample_ratio * search_time) - sample_time \ if len(skeleton_queue.skeletons) <= max_skeletons else INF skeleton_queue.process(stream_plan, action_plan, cost, complexity_limit, allocated_sample_time) else: process_stream_plan(store, domain, disabled, stream_plan, action_plan, cost, bind=bind, max_failures=max_failures) sample_time += elapsed_time(start_time) write_stream_statistics(externals, verbose) return store.extract_solution()