def recover_stream_plan(evaluations, current_plan, opt_evaluations, goal_expression, domain, node_from_atom, action_plan, axiom_plans, negative, replan_step): # Universally quantified conditions are converted into negative axioms # Existentially quantified conditions are made additional preconditions # Universally quantified effects are instantiated by doing the cartesian produce of types (slow) # Added effects cancel out removed effects # TODO: node_from_atom is a subset of opt_evaluations (only missing functions) real_task = task_from_domain_problem( domain, get_problem(evaluations, goal_expression, domain)) opt_task = task_from_domain_problem( domain, get_problem(opt_evaluations, goal_expression, domain)) negative_from_name = { external.blocked_predicate: external for external in negative if external.is_negated() } real_states, full_plan = recover_negative_axioms(real_task, opt_task, axiom_plans, action_plan, negative_from_name) function_plan = compute_function_plan(opt_evaluations, action_plan) full_preimage = plan_preimage(full_plan, []) # Does not contain the stream preimage! negative_preimage = set( filter(lambda a: a.predicate in negative_from_name, full_preimage)) negative_plan = convert_negative(negative_preimage, negative_from_name, full_preimage, real_states) function_plan.update(negative_plan) # TODO: OrderedDict for these plans # TODO: this assumes that actions do not negate preimage goals positive_preimage = { l for l in (set(full_preimage) - real_states[0] - negative_preimage) if not l.negated } steps_from_fact = { fact_from_fd(l): full_preimage[l] for l in positive_preimage } last_from_fact = { fact: min(steps) for fact, steps in steps_from_fact.items() if get_prefix(fact) != EQ } #stream_plan = reschedule_stream_plan(evaluations, target_facts, domain, stream_results) # visualize_constraints(map(fact_from_fd, target_facts)) for result, step in function_plan.items(): for fact in result.get_domain(): last_from_fact[fact] = min(step, last_from_fact.get(fact, INF)) # TODO: get_steps_from_stream stream_plan = [] last_from_stream = dict(function_plan) for result in current_plan: # + negative_plan? # TODO: actually compute when these are needed + dependencies last_from_stream[result] = 0 if isinstance(result.external, Function) or (result.external in negative): if len(action_plan) != replan_step: raise NotImplementedError( ) # TODO: deferring negated optimizers # Prevents these results from being pruned function_plan[result] = replan_step else: stream_plan.append(result) curr_evaluations = evaluations_from_stream_plan(evaluations, stream_plan, max_effort=None) extraction_facts = set(last_from_fact) - set( map(fact_from_evaluation, curr_evaluations)) extract_stream_plan(node_from_atom, extraction_facts, stream_plan) # Recomputing due to postprocess_stream_plan stream_plan = postprocess_stream_plan(evaluations, domain, stream_plan, last_from_fact) node_from_atom = get_achieving_streams(evaluations, stream_plan, max_effort=None) fact_sequence = [set(result.get_domain()) for result in stream_plan] + [extraction_facts] for facts in reversed(fact_sequence): # Bellman ford for fact in facts: # could flatten instead result = node_from_atom[fact].result if result is None: continue step = last_from_fact[fact] if result.is_deferrable() else 0 last_from_stream[result] = min(step, last_from_stream.get(result, INF)) for domain_fact in result.instance.get_domain(): last_from_fact[domain_fact] = min( last_from_stream[result], last_from_fact.get(domain_fact, INF)) stream_plan.extend(function_plan) # Useful to recover the correct DAG partial_orders = set() for child in stream_plan: # TODO: account for fluent objects for fact in child.get_domain(): parent = node_from_atom[fact].result if parent is not None: partial_orders.add((parent, child)) #stream_plan = topological_sort(stream_plan, partial_orders) bound_objects = set() for result in stream_plan: if (last_from_stream[result] == 0) or not result.is_deferrable(bound_objects=bound_objects): for ancestor in get_ancestors(result, partial_orders) | {result}: # TODO: this might change descendants of ancestor. Perform in a while loop. last_from_stream[ancestor] = 0 if isinstance(ancestor, StreamResult): bound_objects.update(out for out in ancestor.output_objects if out.is_unique()) #local_plan = [] # TODO: not sure what this was for #for fact, step in sorted(last_from_fact.items(), key=lambda pair: pair[1]): # Earliest to latest # print(step, fact) # extract_stream_plan(node_from_atom, [fact], local_plan, last_from_fact, last_from_stream) # Each stream has an earliest evaluation time # When computing the latest, use 0 if something isn't deferred # Evaluate each stream as soon as possible # Option to defer streams after a point in time? # TODO: action costs for streams that encode uncertainty state = set(real_task.init) remaining_results = list(stream_plan) first_from_stream = {} #assert 1 <= replan_step # Plan could be empty for step, instance in enumerate(action_plan): for result in list(remaining_results): # TODO: could do this more efficiently if need be domain = result.get_domain() + get_fluent_domain(result) if conditions_hold(state, map(fd_from_fact, domain)): remaining_results.remove(result) certified = { fact for fact in result.get_certified() if get_prefix(fact) != EQ } state.update(map(fd_from_fact, certified)) if step != 0: first_from_stream[result] = step # TODO: assumes no fluent axiom domain conditions apply_action(state, instance) #assert not remaining_results # Not true if retrace if first_from_stream: replan_step = min(replan_step, *first_from_stream.values()) eager_plan = [] results_from_step = defaultdict(list) for result in stream_plan: earliest_step = first_from_stream.get(result, 0) latest_step = last_from_stream.get(result, 0) assert earliest_step <= latest_step defer = replan_step <= latest_step if not defer: eager_plan.append(result) # We only perform a deferred evaluation if it has all deferred dependencies # TODO: make a flag that also allows dependencies to be deferred future = (earliest_step != 0) or defer if future: future_step = latest_step if defer else earliest_step results_from_step[future_step].append(result) # TODO: some sort of obj side-effect bug that requires obj_from_pddl to be applied last (likely due to fluent streams) eager_plan = convert_fluent_streams(eager_plan, real_states, action_plan, steps_from_fact, node_from_atom) combined_plan = [] for step, action in enumerate(action_plan): combined_plan.extend(result.get_action() for result in results_from_step[step]) combined_plan.append( transform_action_args(pddl_from_instance(action), obj_from_pddl)) # TODO: the returned facts have the same side-effect bug as above # TODO: annotate when each preimage fact is used preimage_facts = { fact_from_fd(l) for l in full_preimage if (l.predicate != EQ) and not l.negated } for negative_result in negative_plan: # TODO: function_plan preimage_facts.update(negative_result.get_certified()) for result in eager_plan: preimage_facts.update(result.get_domain()) # Might not be able to regenerate facts involving the outputs of streams preimage_facts.update( result.get_certified()) # Some facts might not be in the preimage # TODO: record streams and axioms return eager_plan, OptPlan(combined_plan, preimage_facts)
def add_plan_constraints(constraints, domain, evaluations, goal_exp, internal=False): if (constraints is None) or (constraints.skeletons is None): return goal_exp import pddl # TODO: unify this with the constraint ordering # TODO: can constrain to use a plan prefix prefix = get_internal_prefix(internal) assigned_predicate = ASSIGNED_PREDICATE.format(prefix) bound_predicate = BOUND_PREDICATE.format(prefix) group_predicate = GROUP_PREDICATE.format(prefix) order_predicate = ORDER_PREDICATE.format(prefix) new_facts = [] for group in constraints.groups: for value in constraints.groups[group]: # TODO: could make all constants groups (like an equality group) fact = (group_predicate, to_obj(group), to_obj(value)) new_facts.append(fact) new_actions = [] new_goals = [] for num, skeleton in enumerate(constraints.skeletons): actions, orders = skeleton incoming_orders, _ = neighbors_from_orders(orders) order_facts = [(order_predicate, to_obj('n{}'.format(num)), to_obj('t{}'.format(step))) for step in range(len(actions))] for step, (name, args) in enumerate(actions): # TODO: could also just remove the free parameter from the action new_action = deepcopy( find_unique(lambda a: a.name == name, domain.actions)) local_from_global = { a: p.name for a, p in safe_zip(args, new_action.parameters) if is_parameter(a) } ancestors, descendants = get_ancestors(step, orders), get_descendants( step, orders) parallel = set(range( len(actions))) - ancestors - descendants - {step} parameters = set(filter(is_parameter, args)) ancestor_parameters = parameters & set( filter(is_parameter, (p for idx in ancestors for p in actions[idx][1]))) #descendant_parameters = parameters & set(filter(is_parameter, (p for idx in descendants for p in actions[idx][1]))) parallel_parameters = parameters & set( filter(is_parameter, (p for idx in parallel for p in actions[idx][1]))) #bound_preconditions = [Imply(bound, assigned) for bound, assigned in safe_zip(bound_facts, assigned_facts)] bound_condition = pddl.Conjunction([ pddl.Disjunction( map(fd_from_fact, [ Not((bound_predicate, to_constant(p))), (assigned_predicate, to_constant(p), local_from_global[p]) ])) for p in parallel_parameters ]) existing_preconditions = [(assigned_predicate, to_constant(p), local_from_global[p]) for p in ancestor_parameters] constant_pairs = [(a, p.name) for a, p in safe_zip(args, new_action.parameters) if is_constant(a)] group_preconditions = [ (group_predicate if is_hashable(a) and (a in constraints.groups) else EQ, to_obj(a), p) for a, p in constant_pairs ] order_preconditions = [ order_facts[idx] for idx in incoming_orders[step] ] new_preconditions = existing_preconditions + group_preconditions + order_preconditions + [ Not(order_facts[step]) ] new_action.precondition = pddl.Conjunction([ new_action.precondition, bound_condition, make_preconditions(new_preconditions) ]).simplified() new_parameters = parameters - ancestors bound_facts = [(bound_predicate, to_constant(p)) for p in new_parameters] assigned_facts = [(assigned_predicate, to_constant(p), local_from_global[p]) for p in new_parameters] new_effects = bound_facts + assigned_facts + [order_facts[step]] new_action.effects.extend(make_effects(new_effects)) # TODO: should also negate the effects of all other sequences here new_actions.append(new_action) #new_action.dump() new_goals.append( And(*[order_facts[idx] for idx in incoming_orders[GOAL_INDEX]])) add_predicate(domain, make_predicate(order_predicate, ['?num', '?step'])) if constraints.exact: domain.actions[:] = [] domain.actions.extend(new_actions) new_goal_exp = And(goal_exp, Or(*new_goals)) for fact in new_facts: add_fact(evaluations, fact, result=INTERNAL_EVALUATION) return new_goal_exp