# Triangulation

import numpy as np
import pymc as pm
from pdefields import pymc_objects, operators, algorithms
from pdefields.backends import cholmod
from pdefields.manifolds import spherical
from scipy.special import gamma
from scipy import sparse

n = 250

X = spherical.well_spaced_mesh(n)

neighbors, triangles, trimap, b = spherical.triangulate_sphere(X)
# spherical.plot_triangulation(X,neighbors)

# Matrix generation
triangle_areas = [spherical.triangle_area(X, t) for t in triangles]
Ctilde = spherical.Ctilde(X, triangles, triangle_areas)
C = spherical.C(X, triangles, triangle_areas)
G = spherical.G(X, triangles, triangle_areas)

# Operator generation
Ctilde = cholmod.into_matrix_type(Ctilde)
G = cholmod.into_matrix_type(G)
M = np.zeros(n)

kappa = pm.Exponential('kappa', 1, value=3)
alpha = pm.DiscreteUniform('alpha', 1, 10, value=2.)
示例#2
0
import numpy as np
import pymc as pm
from pdefields import pymc_objects, operators, algorithms
from pdefields.backends import cholmod
from pdefields.manifolds import spherical
from scipy.special import gamma
from scipy import sparse

n = 250

X = spherical.well_spaced_mesh(n)

neighbors, triangles, trimap, b = spherical.triangulate_sphere(X)
# spherical.plot_triangulation(X,neighbors)

# Matrix generation
triangle_areas = [spherical.triangle_area(X, t) for t in triangles]
Ctilde = spherical.Ctilde(X, triangles, triangle_areas)
C = spherical.C(X, triangles, triangle_areas)
G = spherical.G(X, triangles, triangle_areas)

# Operator generation
Ctilde = cholmod.into_matrix_type(Ctilde)
G = cholmod.into_matrix_type(G)
M = np.random.normal(size=n)

kappa = pm.Exponential('kappa',1,value=3)
alpha = pm.DiscreteUniform('alpha',1,10,value=2.)

@pm.deterministic
def Q(kappa=kappa, alpha=alpha):
示例#3
0
文件: inla.py 项目: apatil/pdefields
def make_model(X):
    neighbors, triangles, trimap, b = spherical.triangulate_sphere(X)
    # spherical.plot_triangulation(X,neighbors)

    # Matrix generation
    triangle_areas = [spherical.triangle_area(X, t) for t in triangles]
    Ctilde = spherical.Ctilde(X, triangles, triangle_areas)
    C = spherical.C(X, triangles, triangle_areas)
    G = spherical.G(X, triangles, triangle_areas)

    # Operator generation
    Ctilde = cholmod.into_matrix_type(Ctilde)
    G = cholmod.into_matrix_type(G)

    # amp is the overall amplitude. It's a free variable that will probably be highly confounded with kappa.
    amp = pm.Exponential('amp', .0001, value=100)

    # A constant mean.
    m = pm.Uninformative('m', value=0)

    @pm.deterministic(trace=False)
    def M(m=m, n=len(X)):
        """The mean vector"""
        return np.ones(n) * m

    kappa = pm.Exponential('kappa', 1, value=3)
    alpha = pm.DiscreteUniform('alpha', 1, 10, value=2., observed=True)

    @pm.deterministic(trace=False)
    def Q(kappa=kappa, alpha=alpha, amp=amp):
        out = operators.mod_frac_laplacian_precision(
            Ctilde, G, kappa, alpha, cholmod) / np.asscalar(amp)**2
        return out

    # Nailing this ahead of time reduces time to compute logp from .18 to .13s for n=25000.
    pattern_products = cholmod.pattern_to_products(Q.value)
    # @pm.deterministic
    # def pattern_products(Q=Q):
    #     return cholmod.pattern_to_products(Q)

    @pm.deterministic(trace=False)
    def precision_products(Q=Q, p=pattern_products):
        try:
            return cholmod.precision_to_products(Q, **p)
        except cholmod.NonPositiveDefiniteError:
            return None

    S = pymc_objects.SparseMVN('S', M, precision_products, cholmod)

    vars = pm.rgamma(4, 4, size=n)
    vals = X[:, 2]

    data = pm.Normal('data', S, 1. / vars, value=vals, observed=True)

    Qobs = sparse.csc_matrix((n, n))
    Qobs.setdiag(1. / vars)

    @pm.deterministic(trace=False)
    def true_evidence(Q=Q, M=M, vals=vals, vars=vars):
        C = np.array(Q.todense().I + np.diag(vars))
        return pm.mv_normal_cov_like(vals, M, C)

    # Stuff for the scoring algorithm-based full conditional
    def first_likelihood_derivative(x, vals=vals, vars=vars):
        return -(x - vals) / vars

    def second_likelihood_derivative(x, vals=vals, vars=vars):
        return -1. / vars

    return locals()
示例#4
0
文件: inla.py 项目: apatil/pdefields
def make_model(X):
    neighbors, triangles, trimap, b = spherical.triangulate_sphere(X)
    # spherical.plot_triangulation(X,neighbors)

    # Matrix generation
    triangle_areas = [spherical.triangle_area(X, t) for t in triangles]
    Ctilde = spherical.Ctilde(X, triangles, triangle_areas)
    C = spherical.C(X, triangles, triangle_areas)
    G = spherical.G(X, triangles, triangle_areas)

    # Operator generation
    Ctilde = cholmod.into_matrix_type(Ctilde)
    G = cholmod.into_matrix_type(G)
    
    # amp is the overall amplitude. It's a free variable that will probably be highly confounded with kappa.
    amp = pm.Exponential('amp', .0001, value=100)

    # A constant mean.
    m = pm.Uninformative('m',value=0)
    
    @pm.deterministic(trace=False)
    def M(m=m,n=len(X)):
        """The mean vector"""
        return np.ones(n)*m

    kappa = pm.Exponential('kappa',1,value=3)
    alpha = pm.DiscreteUniform('alpha',1,10,value=2., observed=True)

    @pm.deterministic(trace=False)
    def Q(kappa=kappa, alpha=alpha, amp=amp):
        out = operators.mod_frac_laplacian_precision(Ctilde, G, kappa, alpha, cholmod)/np.asscalar(amp)**2
        return out

    # Nailing this ahead of time reduces time to compute logp from .18 to .13s for n=25000.
    pattern_products = cholmod.pattern_to_products(Q.value)
    # @pm.deterministic
    # def pattern_products(Q=Q):
    #     return cholmod.pattern_to_products(Q)

    @pm.deterministic(trace=False)
    def precision_products(Q=Q, p=pattern_products):
        try:
            return cholmod.precision_to_products(Q, **p)
        except cholmod.NonPositiveDefiniteError:
            return None

    S=pymc_objects.SparseMVN('S',M, precision_products, cholmod)

    vars = pm.rgamma(4,4,size=n)
    vals = X[:,2]

    data = pm.Normal('data', S, 1./vars, value=vals, observed=True)
    
    Qobs = sparse.csc_matrix((n,n))
    Qobs.setdiag(1./vars)
    
    @pm.deterministic(trace=False)
    def true_evidence(Q=Q, M=M, vals=vals, vars=vars):
        C = np.array(Q.todense().I+np.diag(vars))
        return pm.mv_normal_cov_like(vals, M, C)
    
    # Stuff for the scoring algorithm-based full conditional
    def first_likelihood_derivative(x, vals=vals, vars=vars):
        return -(x-vals)/vars
    
    def second_likelihood_derivative(x, vals=vals, vars=vars):
        return -1./vars

    return locals()