def __init__(self, device, name, tolerance, t_max, local_search_iterations=0, epsilon=0.05): super(SurveyPropagatorSolver, self).__init__( device=device, name=name, propagator=pdp_propagate.SurveyPropagator(device, decimator_dimension=1, include_adaptors=False), decimator=pdp_decimate.SequentialDecimator( device, message_dimension=(3, 1), scorer=pdp_predict.SurveyScorer(device, message_dimension=1, include_adaptors=False), tolerance=tolerance, t_max=t_max), predictor=pdp_predict.IdentityPredictor(device=device, random_fill=True), local_search_iterations=local_search_iterations, epsilon=epsilon)
def __init__( self, device, name, edge_dimension, meta_data_dimension, propagator_dimension, decimator_dimension, mem_hidden_dimension, agg_hidden_dimension, mem_agg_hidden_dimension, classifier_dimension, dropout, tolerance, t_max, local_search_iterations=0, epsilon=0.05, ): super(NeuralSequentialDecimatorSolver, self).__init__( device=device, name=name, propagator=pdp_propagate.NeuralMessagePasser( device, edge_dimension, decimator_dimension, meta_data_dimension, propagator_dimension, mem_hidden_dimension, mem_agg_hidden_dimension, agg_hidden_dimension, dropout, ), decimator=pdp_decimate.SequentialDecimator( device, message_dimension=(3, 1), scorer=pdp_predict.NeuralPredictor( device, decimator_dimension, 1, edge_dimension, meta_data_dimension, mem_hidden_dimension, agg_hidden_dimension, mem_agg_hidden_dimension, variable_classifier=util.PerceptronTanh( decimator_dimension, classifier_dimension, 1 ), function_classifier=None, ), tolerance=tolerance, t_max=t_max, ), predictor=pdp_predict.IdentityPredictor(device=device, random_fill=True), local_search_iterations=local_search_iterations, epsilon=epsilon, )
def __init__(self, device, name, iteration_num, epsilon=0.05): super(WalkSATSolver, self).__init__( device=device, name=name, propagator=None, decimator=None, predictor=pdp_predict.IdentityPredictor(device=device, random_fill=True), local_search_iterations=iteration_num, epsilon=epsilon, )