#y = np.mean(np.log10(np.array(wp_vals)),axis = 0 ) #y = np.log10(np.loadtxt('/nfs/slac/g/ki/ki18/des/swmclau2/AB_tests/sham_vpeak_wp.npy')) # TODO need a way to get a measurement cov for the shams cov = np.cov(np.log10(np.array(wp_vals).T)) #/np.sqrt(50) #obs_nd = np.mean(np.array(nds)) #obs_nd = np.loadtxt('/nfs/slac/g/ki/ki18/des/swmclau2/AB_tests/sham_vpeak_nd.npy') obs_nd_err = np.std(np.array(nds)) param_names = [k for k in em_params.iterkeys() if k not in fixed_params] nwalkers = 100 nsteps = 1000 nburn = 0 chain = run_mcmc(emu, cat, param_names, y, cov, rpoints,obs_nd, obs_nd_err,'calc_analytic_nd', fixed_params = fixed_params,\ nwalkers = nwalkers, nsteps = nsteps, nburn = nburn)#\ #resume_from_previous = '/u/ki/swmclau2/des/PearceMCMC/100_walkers_1000_steps_chain_vpeak_sham_free_split_2.npy')#, ncores = 1) #from sys import exit #exit(1) savedir = '/u/ki/swmclau2/des/PearceMCMC/' np.savetxt( path.join( savedir, '%d_walkers_%d_steps_chain_vpeak_sham_free_split_fixed_sat.npy' % (nwalkers, nsteps)), chain) #np.savetxt(path.join(savedir, '%d_walkers_%d_steps_truth_ld_errors_2.npy'%(nwalkers, nsteps)),\ # np.array([em_params[p] for p in param_names])) #np.savetxt(path.join(savedir, '%d_walkers_%d_steps_fixed_old_errors_2.npy'%(nwalkers, nsteps)),\ # np.array([fixed_params[p] for p in param_names if p in fixed_params]))
#y = np.mean(np.log10(np.array(wp_vals)),axis = 0 ) #y = np.log10(np.loadtxt('/nfs/slac/g/ki/ki18/des/swmclau2/AB_tests/sham_vpeak_wp.npy')) # TODO need a way to get a measurement cov for the shams cov = np.cov(np.log10(np.array(wp_vals).T)) #/np.sqrt(50) #obs_nd = np.mean(np.array(nds)) #obs_nd = np.loadtxt('/nfs/slac/g/ki/ki18/des/swmclau2/AB_tests/sham_vpeak_nd.npy') obs_nd_err = np.std(np.array(nds)) param_names = [k for k in em_params.iterkeys() if k not in fixed_params] nwalkers = 100 nsteps = 1000 nburn = 0 chain = run_mcmc(emu, cat, param_names, y, cov, rpoints,obs_nd, obs_nd_err,'calc_analytic_nd', fixed_params = fixed_params,\ nwalkers = nwalkers, nsteps = nsteps, nburn = nburn,\ resume_from_previous = '/u/ki/swmclau2/des/PearceMCMC/100_walkers_1000_steps_chain_vpeak_sham_free_split_2.npy')#, ncores = 1) #from sys import exit #exit(1) savedir = '/u/ki/swmclau2/des/PearceMCMC/' np.savetxt( path.join( savedir, '%d_walkers_%d_steps_chain_vpeak_sham_free_split_3.npy' % (nwalkers, nsteps)), chain) #np.savetxt(path.join(savedir, '%d_walkers_%d_steps_truth_ld_errors_2.npy'%(nwalkers, nsteps)),\ # np.array([em_params[p] for p in param_names])) #np.savetxt(path.join(savedir, '%d_walkers_%d_steps_fixed_old_errors_2.npy'%(nwalkers, nsteps)),\ # np.array([fixed_params[p] for p in param_names if p in fixed_params]))