def should_raise_exception(param, value): try: config.set(param, value) except: assert True else: assert False
def test_pebl(numvars, numsamples, greedy_iters, cachesize): print "Testing with #vars=%d, #samples=%d, iters=%d, cachesize=%d" % ( numvars, numsamples, greedy_iters, cachesize) config.set('localscore_cache.maxsize', cachesize) d = data.Dataset(N.random.rand(numsamples, numvars)) d.discretize() g = greedy.GreedyLearner(d, max_iterations=greedy_iters) g.run() return g
def test_configobj1(self): expected = \ """[test] param1 = foo param0 = foo [test1] param1 = 5 """ config.IntParameter('test1.param1', 'a param', default=5) config.set('test.param1', 'foo') params = [config._parameters.get(x) for x in ('test.param0', 'test.param1', 'test1.param1')] tmpfile = NamedTemporaryFile(prefix="pebl.test") config.configobj(params).write(tmpfile) tmpfile.file.seek(0) actual = tmpfile.read() assert actual == expected
def test_set8(self): config.set('test.param1', 'foo') config.set('test.param1', 'bar') should_raise_exception('test.param1', 'foobar')
def test_set7(self): config.set('test.param7', 1.50) config.set('test.param7', "1.50") config.set('test.param7', "1.5e0") assert config.get('test.param7') == 1.5 assert isinstance(config.get('test.param7'), float)
def test_set4(self): config.set('test.param5', 50) # no exception should_raise_exception('test.param5', 5) assert config.get('test.param5') == 50
def test_set3(self): config.set('test.param4', 150) # no exception should_raise_exception('test.param4', 50)
def test_get4(self): config.set('test.param2', "10") assert isinstance(config.get('test.param2'), int) assert config.get('test.param2') == 10
def setUp(self): config.set("evaluator.missingdata_evaluator", "exact") self.data = data.fromfile(testfile("testdata13.txt")).subset(samples=range(5)) self.learner = greedy.GreedyLearner(self.data, max_iterations=10)
def setUp(self): config.set("evaluator.missingdata_evaluator", self.missing_evaluator) self.data = data.fromfile(testfile("testdata13.txt")) self.learner = self.learnertype(self.data)