示例#1
0
def handle_frames(frame):
    detection_results = api.get_person_bbox(frame, thr=0.6)

    bounding_boxs = []
    for bbox in detection_results:
        logger.info('coordinates: {} {}. '.format(bbox[0], bbox[1]))

        x1 = int(bbox[0][0])
        y1 = int(bbox[0][1])
        x2 = int(bbox[1][0])
        y2 = int(bbox[1][1])

        person = frame[y1:y2, x1:x2, :]

        identify_name, score = compare.run(person, origin_f, origin_name)

        if (identify_name in ["MJ2", "MJ3", "MJ4"]):
            identify_name = "MJ"
        elif (identify_name in ["QY1", "QY2"]):
            identify_name = "QY"

        print("identify name:{}, score:{}".format(identify_name,
                                                  round(1 - score, 2)))

        bounding_boxs.append([(x1, y1), (x2, y2),
                              identify_name + ' ' + str(round(1 - score, 2))])
        #img = cam_detection.draw_rectangle(img, (x1,y1,x2,y2), identify_name+'  '+str(round((1-score), 2)))

    for obj in bounding_boxs:
        print(obj)
        cv2.putText(frame, obj[2], (obj[0][0], obj[0][1] - 5),
                    cv2.FONT_HERSHEY_PLAIN, 1, (0, 255, 0), 2)
        frame = cv2.rectangle(frame, obj[0], obj[1], (0, 255, 0), 2)

    return frame
示例#2
0
def detect_person(frame):

    detection_results = api.get_person_bbox(frame, thr=0.5)

    #persons = []
    #for bbox in detection_results:
    #	x1 = int(bbox[0][0])
    #	y1 = int(bbox[0][1])
    #	x2 = int(bbox[1][0])
    #	y2 = int(bbox[1][1])

    #person = frame[y1:y2, x1:x2, :]
    #persons.append(person)

    #return detection_results, persons
    return detection_results, frame
示例#3
0
def handle_frames(frame):
	detection_results = api.get_person_bbox(frame, thr=0.6)
	if len(detection_results) == 2:
		cmd_1 = " curl -v -d 'nodeName=edge' 'http://192.168.1.105:5001/listen' "
		res = subprocess.Popen(cmd_1, shell=True)
		#res.terminate()
		#try:
			#	sys.exit(0)
		#except:
			#	print('die')
		#finally:
			#	print('cleanup')
		sys.exit(0)
		#break

	bounding_boxs = []
	for bbox in detection_results:
		logger.info('coordinates: {} {}. '.
					format(bbox[0], bbox[1]))

		x1 = int(bbox[0][0])
		y1 = int(bbox[0][1])
		x2 = int(bbox[1][0])
		y2 = int(bbox[1][1])

		person = frame[y1:y2, x1:x2, :]

		identify_name, score = compare.run(person, origin_f, origin_name)

		if(identify_name in [ "MJ1", "MJ2", "MJ3", "MJ4", "MJ5"]):
				identify_name = "Person_1"
		elif(identify_name in ["QY1", "QY2", "QY3", "QY4", "QY5"]):
			identify_name = "Person_2"
			
		print("identify name:{}, score:{}".format(identify_name, round(1-score, 2)))
		
		bounding_boxs.append([(x1,y1), (x2,y2), identify_name+' '+str(round(1-score, 2))])
		#img = cam_detection.draw_rectangle(img, (x1,y1,x2,y2), identify_name+'  '+str(round((1-score), 2)))
			
	for obj in bounding_boxs:
		print(obj)
		cv2.putText(frame, obj[2], (obj[0][0], obj[0][1] - 5), cv2.FONT_HERSHEY_PLAIN, 1, (0, 255, 0), 2)
		frame = cv2.rectangle(frame, obj[0], obj[1], (0, 255, 0), 2)
		
	return frame
示例#4
0
def handle_frames(frame):

	global tracker_list
	global max_age
	global min_hits
	global track_id_list

	detection_results = api.get_person_bbox(frame, thr=0.5)
	
	x_box =[]
	if len(tracker_list) > 0:
		for trk in tracker_list:
			x_box.append([(trk.box[0],trk.box[1]),(trk.box[2],trk.box[3])]) #should be changed into the right format instead of the .box format
            
	matched, unmatched_dets, unmatched_trks = assign_detections_to_trackers(x_box, detection_results, iou_thrd = 0.2)  
	
	# Deal with matched detections     
	if matched.size >0:
		for trk_idx, det_idx in matched:
			z = detection_results[det_idx]
			z = np.expand_dims([n for a in z for n in a], axis=0).T
			tmp_trk= tracker_list[trk_idx]
			tmp_trk.kalman_filter(z)
			xx = tmp_trk.x_state.T[0].tolist()
			xx =[xx[0], xx[2], xx[4], xx[6]]
			x_box[trk_idx] = xx
			tmp_trk.box =xx
			tmp_trk.hits += 1
			tmp_trk.no_losses = 0
	
    # Deal with unmatched detections      
	if len(unmatched_dets)>0:
		for idx in unmatched_dets:
			z = detection_results[idx]
			x1 = int(z[0][0])
			y1 = int(z[0][1])
			x2 = int(z[1][0])
			y2 = int(z[1][1])
			person = frame[y1:y2, x1:x2, :]
			identify_name, score = compare.run(person, origin_f, origin_name)
			if(identify_name in [ "MJ1", "MJ2", "MJ3", "MJ4", "MJ5"]):
				identify_name = "Person_1"
			elif(identify_name in ["QY1", "QY2", "QY3", "QY4", "QY5"]):
				identify_name = "Person_2"
			print("identify name:{}, score:{}".format(identify_name, round(1-score, 2)))
			
            #generate a new tracker for the person
			z = np.expand_dims([n for a in z for n in a], axis=0).T
			tmp_trk = Tracker() # Create a new tracker
			x = np.array([[z[0], 0, z[1], 0, z[2], 0, z[3], 0]]).T
			tmp_trk.x_state = x
			tmp_trk.predict_only()
			xx = tmp_trk.x_state
			xx = xx.T[0].tolist()
			xx =[xx[0], xx[2], xx[4], xx[6]]
			tmp_trk.box = xx
			tmp_trk.id = track_id_list.popleft() # assign an ID for the tracker
			tmp_trk.personReID_info['personID'] = identify_name #assign the reidentified personID for the tracker
			tracker_list.append(tmp_trk)
			x_box.append(xx)
	
	    # Deal with unmatched tracks       
	if len(unmatched_trks)>0:
		for trk_idx in unmatched_trks:
			tmp_trk = tracker_list[trk_idx]
			tmp_trk.no_losses += 1
			tmp_trk.predict_only()
			xx = tmp_trk.x_state
			xx = xx.T[0].tolist()
			xx =[xx[0], xx[2], xx[4], xx[6]]
			tmp_trk.box =xx
			x_box[trk_idx] = xx
	
	# The list of tracks to be annotated and draw the figure
	good_tracker_list =[]
	for trk in tracker_list:
		if ((trk.hits >= min_hits) and (trk.no_losses <=max_age)):
			good_tracker_list.append(trk)
			x_cv2 = trk.box
			trackerID_str="Unknown Person:"+str(trk.id)
			if trk.personReID_info['personID'] == "Unknown":
				frame= draw_box_label(frame, x_cv2,personReID_info={'personID':trackerID_str}) # Draw the bounding boxes for unknown person
			else:
				frame= draw_box_label(frame, x_cv2,personReID_info=trk.personReID_info) # Draw the bounding boxes for re-identified person
	#book keeping
	deleted_tracks = filter(lambda x: x.no_losses > max_age, tracker_list)

	for trk in deleted_tracks:
		track_id_list.append(trk.id)

	tracker_list = [x for x in tracker_list if x.no_losses<=max_age]

# 	#the original codes
# 	for bbox in detection_results:
# 		logger.info('coordinates: {} {}. '.
# 					format(bbox[0], bbox[1]))

# 		x1 = int(bbox[0][0])
# 		y1 = int(bbox[0][1])
# 		x2 = int(bbox[1][0])
# 		y2 = int(bbox[1][1])

# 		person = frame[y1:y2, x1:x2, :]

# 		identify_name, score = compare.run(person, origin_f, origin_name)

# 		if(identify_name in [ "MJ1", "MJ2", "MJ3", "MJ4", "MJ5"]):
# 				identify_name = "Person_1"
# 		elif(identify_name in ["QY1", "QY2", "QY3", "QY4", "QY5"]):
# 			identify_name = "Person_2"
# 			
# 		print("identify name:{}, score:{}".format(identify_name, round(1-score, 2)))
# 		
# 		bounding_boxs.append([(x1,y1), (x2,y2), identify_name+' '+str(round(1-score, 2))])
# 		#img = cam_detection.draw_rectangle(img, (x1,y1,x2,y2), identify_name+'  '+str(round((1-score), 2)))
        
        
    
			
# 	for obj in bounding_boxs:
# 		print(obj)
# 		cv2.putText(frame, obj[2], (obj[0][0], obj[0][1] - 5), cv2.FONT_HERSHEY_PLAIN, 1, (0, 255, 0), 2)
# 		frame = cv2.rectangle(frame, obj[0], obj[1], (0, 255, 0), 2)
		
	return frame
示例#5
0
		yield (b'--frame\r\n'
					   b'Content-Type: image/jpeg\r\n\r\n' + bytearray(outputFrame) + b'\r\n')
		

		# if the `q` key was pressed, break from the loop
		#if key == ord("q"):
		#	break
    
@app.route('/video_feed')
def video_feed():
	#Video streaming route. Put this in the src attribute of an img tag
	return Response(gen_frames(), mimetype='multipart/x-mixed-replace; boundary=frame')


@app.route('/')
def index():
	"""Video streaming home page."""
	return render_template('index.html')

if __name__ == '__main__':
	img = cv2.imread('example.jpg')
	detection_test = api.get_person_bbox(img, thr=0.5)
	print(detection_test)
	img = handle_frames(img)
	#plt.imshow(img[:, :, ::-1])
	print("show frame")
	#plt.show()
	app.run(host='0.0.0.0', port='5000')
	#gen_frames()

fps = 0
count = 0
total_count = 10
total_time = 0

size = (int(cap.get(3)), int(cap.get(4))) # Size Video
dev = serial.Serial("COM17", baudrate=9600) 

result = cv2.VideoWriter('out.avi', cv2.VideoWriter_fourcc(*'MJPG'),10, size)
count_people = 0
while(cap.isOpened()):
    start = time.time()
    berhasil, img = cap.read()
    # img = imutils.resize(img, width=min(400, img.shape[1]))
    if berhasil:
        bbox_list = api.get_person_bbox(img, thr=0.6)
        # print(bbox_list)
        last_count = count_people
        count_people = 0

        for i in bbox_list:
            cv2.rectangle(img, i[0], i[1], (125, 255, 51), thickness=2)
            count_people+=1

        #detect People
        if (count_people > 0):
            dev.write(b'1')
        else :
            dev.write(b'0')
        
        text_fps = "FPS =" + str((int)(fps))
示例#7
0
def handle_frames(frame):

	global tracker_list
	global max_age
	global min_hits
	global track_id_list
	
	#connect to database
	conn = sqlite3.connect('handwash.db', isolation_level=None)
	#print("Opened database successfully")
	cur = conn.cursor()


	#detect hand
	try:
		frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
	except:
		print("Error converting to RGB")
	#print(type(frame))
	boxes, scores = detector_utils.detect_objects(frame,detection_graph,sess)

	# draw bounding boxes on frame
	hand_in_sink, hand_in_patient = detector_utils.draw_box_on_image_washhand( \
		num_hands_detect, score_thresh, scores, boxes, im_width, \
		im_height, frame, sink_loc, patient_loc)

	try:
		frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
	except:
		print("Error converting to BGR")


	#detect person
	detection_results = api.get_person_bbox(frame, thr=0.50)
	x_box =[]
	if len(tracker_list) > 0:
		for trk in tracker_list:
			x_box.append([(trk.box[0],trk.box[1]),(trk.box[2],trk.box[3])]) #should be changed into the right format instead of the .box format

	matched, unmatched_dets, unmatched_trks = assign_detections_to_trackers(x_box, detection_results, iou_thrd = 0.2)  

	# Deal with matched detections     
	if matched.size >0:
		for trk_idx, det_idx in matched:
			z = detection_results[det_idx]
			z = np.expand_dims([n for a in z for n in a], axis=0).T
			tmp_trk= tracker_list[trk_idx]
			tmp_trk.kalman_filter(z)
			xx = tmp_trk.x_state.T[0].tolist()
			xx =[xx[0], xx[2], xx[4], xx[6]]
			x_box[trk_idx] = xx
			tmp_trk.box =xx
			tmp_trk.hits += 1
			tmp_trk.no_losses = 0

	# Deal with unmatched detections      
	if len(unmatched_dets)>0:
		for idx in unmatched_dets:
			z = detection_results[idx]
			x1 = int(z[0][0])
			y1 = int(z[0][1])
			x2 = int(z[1][0])
			y2 = int(z[1][1])
			person = frame[y1:y2, x1:x2, :]
			identify_name, score = compare.run(person, origin_f, origin_name)
			if(identify_name in [ "QY1", "QY2", "QY3", "QY4", "QY5", "QY6"]):
				identify_name = "Doctor"
			elif(identify_name in ["YN1", "YN2", "YN3", "YN4", "YN5", "YN6"]):
				identify_name = "Nurse"
			print("identify name:{}, score:{}".format(identify_name, round(1-score, 2)))
			
			#generate a new tracker for the person
			z = np.expand_dims([n for a in z for n in a], axis=0).T
			tmp_trk = Tracker() # Create a new tracker
			x = np.array([[z[0], 0, z[1], 0, z[2], 0, z[3], 0]]).T
			tmp_trk.x_state = x
			tmp_trk.predict_only()
			xx = tmp_trk.x_state
			xx = xx.T[0].tolist()
			xx =[xx[0], xx[2], xx[4], xx[6]]
			tmp_trk.box = xx
			tmp_trk.id = track_id_list.popleft() # assign an ID for the tracker
			tmp_trk.personReID_info['personID'] = identify_name #assign the reidentified personID for the tracker
			
			#assign the tracker attribute to new tracker when loose tracking a person but re_id him
			if len(unmatched_trks)>0:
				for trk_idx in unmatched_trks:
					trk_old = tracker_list[trk_idx]
					if trk_old.personReID_info['personID'] == identify_name:
						tmp_trk.have_washed_hand = trk_old.have_washed_hand
						tmp_trk.hand_clean = trk_old.hand_clean
						tmp_trk.have_touched_pat = trk_old.have_touched_pat
						tmp_trk.violate_rule = trk_old.violate_rule

			tracker_list.append(tmp_trk)
			x_box.append(xx)

	# Deal with unmatched tracks       
	if len(unmatched_trks)>0:
		for trk_idx in unmatched_trks:
			tmp_trk = tracker_list[trk_idx]
			tmp_trk.no_losses += 1
			tmp_trk.predict_only()
			xx = tmp_trk.x_state
			xx = xx.T[0].tolist()
			xx =[xx[0], xx[2], xx[4], xx[6]]
			tmp_trk.box =xx
			x_box[trk_idx] = xx

	# The list of tracks to be annotated and draw the figure
	good_tracker_list =[]
	for trk in tracker_list:
		if ((trk.hits >= min_hits) and (trk.no_losses <=max_age)):
			good_tracker_list.append(trk)
			x_cv2 = trk.box
			trackerID_str="Unknown Person:"+str(trk.id)
			if trk.personReID_info['personID'] == "Unknown":
				trk.personReID_info['personID'] = "Unknown Person:"+str(trk.id) # Change the personID for unknown person
			
			frame= draw_box_label(frame, x_cv2, personReID_info=trk.personReID_info) # Draw the bounding boxes for person
	#book keeping
	deleted_tracks = filter(lambda x: x.no_losses > max_age, tracker_list)

	#judge whether the person has washed hand before leaving and add the deleted tracker into the tracke_id_list
	for trk in deleted_tracks:
		print(trk.box, trk.hits)
		if (trk.box[2] >= 640 or trk.box[1]<0) and (trk.hits >= 10):
			if trk.have_touched_pat and (not trk.hand_clean):
				if trk.violate_rule == 2:
					trk.violate_rule = 3
				else:
					trk.violate_rule = 1

			person_tracker_info = "ctime {}, person_ID {}, sub_ID {}".format(int(time.time()), trk.personReID_info['personID'], str(trk.id))
			alarm = " washed_hand {},touched_patient {},violate_rule {}".format(str(trk.have_washed_hand),str(trk.have_touched_pat),str(trk.violate_rule))
			print(trk.personReID_info['personID']+":"+person_tracker_info+alarm)
			info = "insert into HANDEMO (PERSON, CTIME, HLOC, PLOC, HAND, PATIENT, JUDGE) \
			          values ('{}', {}, '{}', '{}', {}, {}, {})".format(trk.personReID_info['personID'], int(time.time()), '', '', \
			          	int(trk.have_washed_hand), int(trk.have_touched_pat), int(trk.violate_rule))
			cur.execute(info)
			if trk.violate_rule == 1 or trk.violate_rule == 3:
				cmd = "play After.wav"
				subprocess.Popen(cmd, shell=True)
			if trk.violate_rule == 2:
				cmd = "play Before.wav"
				subprocess.Popen(cmd, shell=True)
			#if trk.violate_rule != 0:
			#	cmd1 = "play Beep.wav"
			#	subprocess.Popen(cmd1, shell=True)


		track_id_list.append(trk.id)

	tracker_list = [x for x in tracker_list if x.no_losses<=max_age]

	#judge whether this guy has washed has hands
	#for all detected hand in sink
	if len(hand_in_sink):
		for w_h_box in hand_in_sink:
			for trk in good_tracker_list:
				if wash_hand_detector(trk,w_h_box):
					person_tracker_info = "ctime {}, person_ID {}, sub_ID {}".format(int(time.time()), trk.personReID_info['personID'] , str(trk.id))
					location_info = " hand_location {}, person_location {}".format(str(w_h_box), str(trk.box))
					alarm = " washed_hand {},touched_patient {},violate_rule {}".format(str(trk.have_washed_hand),str(trk.have_touched_pat),str(trk.violate_rule))
					#alarm = "washed_hand {},touched_patient {},hand_clean {}".format(str(trk.have_washed_hand),str(trk.have_touched_pat),str(trk.hand_clean))
					cv2.putText(frame,alarm, (w_h_box[0][0],w_h_box[0][1]-10), cv2.FONT_HERSHEY_SIMPLEX, 0.4, (255,191,0), 1, cv2.LINE_AA)
					print(trk.personReID_info['personID']+":"+person_tracker_info+location_info+alarm)
					info = "insert into HANDEMO (PERSON, CTIME, HLOC, PLOC, HAND, PATIENT, JUDGE) \
			          values ('{}', {}, '{}', '{}', {}, {}, {})".format(trk.personReID_info['personID'], int(time.time()), str(w_h_box), str(trk.box), \
			          	int(trk.have_washed_hand), int(trk.have_touched_pat), int(trk.violate_rule))
					cur.execute(info)
					if trk.violate_rule == 1 or trk.violate_rule == 3:
						cmd = "play After.wav"
						subprocess.Popen(cmd, shell=True)
					if trk.violate_rule == 2:
						cmd = "play Before.wav"
						subprocess.Popen(cmd, shell=True)
					#if trk.violate_rule != 0:
					#	cmd1 = "play Beep.wav"
					#	subprocess.Popen(cmd1, shell=True) 

	#for all detected hand in patient
	if len(hand_in_patient):
		for t_p_box in hand_in_patient:
			for trk in good_tracker_list:
				if touch_patient_detector(trk,t_p_box):
					person_tracker_info = "ctime {}, person_ID {}, sub_ID {}".format(int(time.time()), trk.personReID_info['personID'], str(trk.id))
					location_info = " hand_location {}, person_location {}".format(str(t_p_box), str(trk.box))
					alarm = " washed_hand {},touched_patient {},violate_rule {}".format(str(trk.have_washed_hand),str(trk.have_touched_pat),str(trk.violate_rule))
					#alarm = "washed_hand {},touched_patient {},hand_clean {}".format(str(trk.have_washed_hand),str(trk.have_touched_pat),str(trk.hand_clean))
					cv2.putText(frame,alarm, (t_p_box[0][0],t_p_box[0][1]-10), cv2.FONT_HERSHEY_SIMPLEX, 0.4, (0,255,255), 1, cv2.LINE_AA)
					print(trk.personReID_info['personID']+":"+person_tracker_info+location_info+alarm)
					info = "insert into HANDEMO (PERSON, CTIME, HLOC, PLOC, HAND, PATIENT, JUDGE) \
			          values ('{}', {}, '{}', '{}', {}, {}, {})".format(trk.personReID_info['personID'], int(time.time()), str(t_p_box), str(trk.box), \
			          	int(trk.have_washed_hand), int(trk.have_touched_pat), int(trk.violate_rule))
					cur.execute(info)
					if trk.violate_rule == 1 or trk.violate_rule == 3:
						cmd = "play After.wav"
						subprocess.Popen(cmd, shell=True)
					if trk.violate_rule == 2:
						cmd = "play Before.wav"
						subprocess.Popen(cmd, shell=True) 
					#if trk.violate_rule != 0:
					#	cmd1 = "play Beep.wav"
					#	subprocess.Popen(cmd1, shell=True)
	return frame
示例#8
0
import cv2
from pedestrian_detection_ssdlite import api


video = cv2.VideoCapture('pedestrian_video.mp4')

while True:
    (read_successful, frame) = video.read()

    if read_successful is not True:
        break

    bbox_list = api.get_person_bbox(frame, thr=0.6)
    print(bbox_list)

    for i in bbox_list:

        cv2.rectangle(frame, i[0], i[1], (125, 255, 51), thickness=2)
        cv2.putText(frame, 'Person', (i[0][0], i[0][1]), cv2.FONT_HERSHEY_SIMPLEX, 1, (36,255,12), thickness=2)
    
    cv2.imshow('Pedestrain detector ', frame)

    key = cv2.waitKey(1)
    if key==81 or key==113:
        break

video.release()