def build_model(self) -> nn.Module: model = nn.Sequential( nn.Conv2d(NUM_CHANNELS, IMAGE_SIZE, kernel_size=(3, 3)), nn.ReLU(), nn.Conv2d(32, 32, kernel_size=(3, 3)), nn.ReLU(), nn.MaxPool2d((2, 2)), nn.Dropout2d(pedl.get_hyperparameter("layer1_dropout")), nn.Conv2d(32, 64, (3, 3), padding=1), nn.ReLU(), nn.Conv2d(64, 64, (3, 3)), nn.ReLU(), nn.MaxPool2d((2, 2)), nn.Dropout2d(pedl.get_hyperparameter("layer2_dropout")), Flatten(), nn.Linear(2304, 512), nn.ReLU(), nn.Dropout2d(pedl.get_hyperparameter("layer3_dropout")), nn.Linear(512, NUM_CLASSES), nn.Softmax(dim=0), ) # If loading backbone weights, do not call reset_parameters() or # call before loading the backbone weights. reset_parameters(model) return model
def build_model(self) -> nn.Module: model = MultiNet() # If loading backbone weights, do not call reset_parameters() or # call before loading the backbone weights. reset_parameters(model) return model
def build_model(self) -> nn.Module: model = nn.Sequential( nn.Conv2d(1, pedl.get_hyperparameter("n_filters1"), kernel_size=5), nn.MaxPool2d(2), nn.ReLU(), nn.Conv2d( pedl.get_hyperparameter("n_filters1"), pedl.get_hyperparameter("n_filters2"), kernel_size=5, ), nn.MaxPool2d(2), nn.ReLU(), Flatten(), nn.Linear(16 * pedl.get_hyperparameter("n_filters2"), 50), nn.ReLU(), nn.Dropout2d(pedl.get_hyperparameter("dropout")), nn.Linear(50, 10), nn.LogSoftmax(), ) # If loading backbone weights, do not call reset_parameters() or # call before loading the backbone weights. reset_parameters(model) return model