示例#1
0
 def test_run_niter2(self):
     modified_fire1 = ModifiedFireCPP(_xrand, _EG())
     res1 = modified_fire1.run()
     modified_fire2 = ModifiedFireCPP(_xrand, _EG())
     res2 = modified_fire2.run(res1.nsteps // 2)
     res2 = modified_fire2.run()
     self.assert_same(res1, res2)
示例#2
0
 def test_run_niter3(self):
     modified_fire1 = ModifiedFireCPP(_xrand, _EG())
     res1 = modified_fire1.run(10)
     modified_fire2 = ModifiedFireCPP(_xrand, _EG())
     res2 = modified_fire2.run(5)
     res2 = modified_fire2.run(5)
     self.assert_same(res1, res2)
示例#3
0
class Config2D(object):
    def __init__(self, nparticles_x, amplitude):
        self.LX = nparticles_x
        self.LY = self.LX
        self.nparticles_x = nparticles_x
        self.N = self.nparticles_x ** 2
        self.amplitude = amplitude
        self.x = np.zeros(2 * self.N)
        for particle in xrange(self.N):
            pid = 2 * particle
            self.x[pid] = particle % self.LX
            self.x[pid + 1] = int(particle / self.LX)
        self.x_initial = [xi + np.random.uniform(- self.amplitude, self.amplitude) for xi in self.x]
        self.radius = 0.25
        self.sca = 1.1
        self.radii = np.ones(self.N) * self.radius
        self.eps = 1
        self.boxvec = np.array([self.LX, self.LY])
        self.potential = HS_WCA(self.eps, self.sca, self.radii, ndim=2, boxvec=self.boxvec)
        self.rcut = 2 * (1 + self.sca) * self.radius
        self.ncellx_scale = 1
        self.potential_cells = HS_WCAPeriodicCellLists(self.eps, self.sca, self.radii, self.boxvec, self.x_initial, self.rcut, ndim = 2, ncellx_scale = self.ncellx_scale)
        self.tol = 1e-7
        self.maxstep = 1
        self.nstepsmax = 1e5
    def optimize(self, nr_samples = 1):
        self.optimizer = ModifiedFireCPP(self.x_initial, self.potential, tol = self.tol, maxstep = self.maxstep)
        self.optimizer_ = LBFGS_CPP(self.x_initial, self.potential)
        self.optimizer_cells = ModifiedFireCPP(self.x_initial, self.potential_cells, tol = self.tol, maxstep = self.maxstep)
        self.optimizer_cells_ = LBFGS_CPP(self.x_initial, self.potential_cells)
        t0 = time.time()
        self.optimizer.run(self.nstepsmax)
        t1 = time.time()
        self.optimizer_cells.run(self.nstepsmax)
        t2 = time.time()
        self.optimizer_.run(self.nstepsmax)
        t3 = time.time()
        self.optimizer_cells_.run(self.nstepsmax)
        t4 = time.time()
        res_x_final = self.optimizer.get_result()
        res_x_final_cells = self.optimizer_cells.get_result()
        self.x_final = res_x_final.coords
        self.x_final_cells = res_x_final_cells.coords
        print "number of particles:", self.N
        print "time no cell lists:", t1 - t0, "sec"
        print "time cell lists:", t2 - t1, "sec"
        print "ratio:", (t1 - t0) / (t2 - t1)
        assert(res_x_final.success)
        assert(res_x_final_cells.success)
        for (xci, xi) in zip(self.x_final_cells, self.x_final):
            passed = (np.abs(xci - xi) < 1e-10 * self.N)
            if (passed is False):
                print "xci", xci
                print "xi", xi
                assert(passed)
        print "energy no cell lists:", res_x_final.energy
        print "energy cell lists:", res_x_final_cells.energy
        self.t_ratio = (t1 - t0) / (t2 - t1)
        self.t_ratio_lbfgs = (t3 - t2) / (t4 - t3)
示例#4
0
 def do_check(self, pot, **kwargs):
     modified_fire = ModifiedFireCPP(np.zeros(4), pot, stepback=True, **kwargs)
     modified_fire.run()
     modified_fire.reset(_xrand)
     res = modified_fire.run()
     self.assertAlmostEqual(res.energy, _emin, 4)
     self.assertTrue(res.success)
     self.assertLess(np.max(np.abs(res.coords - _xmin)), 1e-2)
     self.assertGreater(res.nfev, 0)
示例#5
0
    def test_event_raise(self):
        class EventException(BaseException):
            pass

        def myevent(*args, **kwargs):
            raise EventException

        with self.assertRaises(EventException):
            modified_fire = ModifiedFireCPP(_xrand, _EG(), events=[myevent])
            modified_fire.run()
示例#6
0
def modifiedfire_cpp(coords, pot, **kwargs):
    if not hasattr(pot, "getEnergyGradient"):
        # for compatibility with old quenchers.
        # assume pot is a getEnergyGradient function
        pot = _getEnergyGradientWrapper(pot)
    modifiedfire = ModifiedFireCPP(coords, pot, **kwargs)    
    return modifiedfire.run()
示例#7
0
 def test_raises(self):
     pot = _lj_cpp._ErrorPotential()
     with self.assertRaises(RuntimeError):
         modified_fire = ModifiedFireCPP(_xrand, pot)
         modified_fire.run()
 def test_event_raise(self):
     class EventException(BaseException): pass
     def myevent(*args, **kwargs): raise EventException
     with self.assertRaises(EventException):
         modified_fire = ModifiedFireCPP(_xrand, _EG(), events=[myevent])
         modified_fire.run()
示例#9
0
 def test_raises(self):
     with self.assertRaises(NotImplementedError):
         modified_fire = ModifiedFireCPP(_xrand, _Raise())
         modified_fire.run()
示例#10
0
class Test2dMinimization(unittest.TestCase):
    def setUp(self):
        np.random.seed(42)
        self.L_mobile = 4
        self.L_total = self.L_mobile + 2
        self.nr_particles_mobile = self.L_mobile * self.L_mobile
        self.nr_particles_total = self.L_total * self.L_total
        self.nr_particles_frozen = self.nr_particles_total - self.nr_particles_mobile
        self.box_dimension = 2
        self.ndof = self.nr_particles_total * self.box_dimension
        self.n_frozen_dof = self.nr_particles_frozen * self.box_dimension
        self.frozen_dof = []
        self.frozen_atoms = []
        for particle_index in range(self.nr_particles_total):
            xmean = int(particle_index % self.L_total)
            ymean = int(particle_index / self.L_total)
            if ymean == 0 or ymean == self.L_total - 1 or xmean == 0 or xmean == self.L_total - 1:
                self.frozen_dof.append(particle_index * self.box_dimension)
                self.frozen_dof.append(particle_index * self.box_dimension + 1)
                self.frozen_atoms.append(particle_index)
        self.eps = 1
        self.x = np.zeros(self.ndof)
        for p in range(self.nr_particles_total):
            xmean = int(p % self.L_total)
            ymean = int(p / self.L_total)
            self.x[p * self.box_dimension] = xmean + 0.1 * np.random.rand()
            self.x[p * self.box_dimension + 1] = ymean + 0.1 * np.random.rand()
        self.radii = np.asarray([0.3 + 0.01 * np.random.rand() for _ in range(self.nr_particles_total)])
        self.sca = 1
        self.rcut = 2 * (1 + self.sca) * np.amax(self.radii)
        self.boxvec = (self.L_total + self.rcut) * np.ones(self.box_dimension)
        self.pot_cells_N_frozen_N = HS_WCA(eps=self.eps, sca=self.sca,
                                    radii=self.radii, ndim=self.box_dimension,
                                    boxvec=self.boxvec, use_periodic=True,
                                    use_frozen=False, use_cell_lists=False)
        self.pot_cells_Y_frozen_N = HS_WCA(eps=self.eps, sca=self.sca,
                                    radii=self.radii, ndim=self.box_dimension,
                                    boxvec=self.boxvec, use_periodic=True,
                                    use_frozen=False, use_cell_lists=True,
                                    reference_coords=self.x, rcut=self.rcut)
        self.pot_cells_N_frozen_Y = HS_WCA(eps=self.eps, sca=self.sca,
                                    radii=self.radii, ndim=self.box_dimension,
                                    boxvec=self.boxvec, use_periodic=True,
                                    use_frozen=True, use_cell_lists=False,
                                    frozen_atoms=self.frozen_atoms,
                                    reference_coords=self.x)
        self.pot_cells_Y_frozen_Y = HS_WCA(eps=self.eps, sca=self.sca,
                                    radii=self.radii, ndim=self.box_dimension,
                                    boxvec=self.boxvec, use_periodic=True,
                                    use_frozen=True, use_cell_lists=True,
                                    reference_coords=self.x,
                                    frozen_atoms=self.frozen_atoms, rcut=self.rcut)
        self.x_red = []
        for atom in range(self.nr_particles_total):
            if atom not in self.frozen_atoms:
                self.x_red.extend(self.x[atom * self.box_dimension : (atom + 1) * self.box_dimension])
        self.opt_NN = ModifiedFireCPP(self.x, self.pot_cells_N_frozen_N)
        self.opt_YN = ModifiedFireCPP(self.x, self.pot_cells_Y_frozen_N)
        self.opt_NY = ModifiedFireCPP(self.x_red, self.pot_cells_N_frozen_Y)
        self.opt_YY = ModifiedFireCPP(self.x_red, self.pot_cells_Y_frozen_Y)
    def test_energies(self):
        self.res_e_before_cells_N_frozen_N = self.opt_NN.get_result()
        self.res_e_before_cells_Y_frozen_N = self.opt_YN.get_result()
        self.res_e_before_cells_N_frozen_Y = self.opt_NY.get_result()
        self.res_e_before_cells_Y_frozen_Y = self.opt_YY.get_result()
        self.assertAlmostEqual(self.res_e_before_cells_N_frozen_N.energy, self.res_e_before_cells_N_frozen_Y.energy, places=8)
        self.assertAlmostEqual(self.res_e_before_cells_Y_frozen_N.energy, self.res_e_before_cells_N_frozen_N.energy, places=8)
        self.assertAlmostEqual(self.res_e_before_cells_N_frozen_N.energy, self.res_e_before_cells_Y_frozen_Y.energy, places=8)
        self.assertAlmostEqual(self.pot_cells_N_frozen_N.getEnergy(self.x), self.pot_cells_Y_frozen_N.getEnergy(self.x), places=8)
    def test_minimization(self):
        self.opt_NN.run()
        self.opt_YN.run()
        self.opt_NY.run()
        self.opt_YY.run()
        self.res_NN = self.opt_NN.get_result()
        self.res_YN = self.opt_YN.get_result()
        self.res_NY = self.opt_NY.get_result()
        self.res_YY = self.opt_YY.get_result()
        self.assertTrue(self.res_NN.success)
        self.assertTrue(self.res_YN.success)
        self.assertTrue(self.res_NY.success)
        self.assertTrue(self.res_YY.success)
        self.assertAlmostEqual(self.res_NY.energy, self.res_YY.energy, delta=1e-10)
        self.assertAlmostEqual(self.pot_cells_N_frozen_N.getEnergy(self.res_NN.coords), self.pot_cells_Y_frozen_N.getEnergy(self.res_YN.coords), delta=1e-10)
示例#11
0
class Test2dMinimization(unittest.TestCase):
    def setUp(self):
        np.random.seed(42)
        self.L_mobile = 4
        self.L_total = self.L_mobile + 2
        self.nr_particles_mobile = self.L_mobile * self.L_mobile
        self.nr_particles_total = self.L_total * self.L_total
        self.nr_particles_frozen = self.nr_particles_total - self.nr_particles_mobile
        self.box_dimension = 2
        self.ndof = self.nr_particles_total * self.box_dimension
        self.n_frozen_dof = self.nr_particles_frozen * self.box_dimension
        self.frozen_dof = []
        self.frozen_atoms = []
        for particle_index in xrange(self.nr_particles_total):
            xmean = int(particle_index % self.L_total)
            ymean = int(particle_index / self.L_total)
            if ymean == 0 or ymean == self.L_total - 1 or xmean == 0 or xmean == self.L_total - 1:
                self.frozen_dof.append(particle_index * self.box_dimension)
                self.frozen_dof.append(particle_index * self.box_dimension + 1)
                self.frozen_atoms.append(particle_index)
        self.eps = 1
        self.x = np.zeros(self.ndof)
        for p in xrange(self.nr_particles_total):
            xmean = int(p % self.L_total)
            ymean = int(p / self.L_total)
            self.x[p * self.box_dimension] = xmean + 0.1 * np.random.rand()
            self.x[p * self.box_dimension + 1] = ymean + 0.1 * np.random.rand()
        self.radii = np.asarray([
            0.3 + 0.01 * np.random.rand()
            for _ in xrange(self.nr_particles_total)
        ])
        self.sca = 1
        self.rcut = 2 * (1 + self.sca) * np.amax(self.radii)
        self.boxvec = (self.L_total + self.rcut) * np.ones(self.box_dimension)
        self.pot_cells_N_frozen_N = HS_WCA(eps=self.eps,
                                           sca=self.sca,
                                           radii=self.radii,
                                           ndim=self.box_dimension,
                                           boxvec=self.boxvec,
                                           use_periodic=True,
                                           use_frozen=False,
                                           use_cell_lists=False)
        self.pot_cells_Y_frozen_N = HS_WCA(eps=self.eps,
                                           sca=self.sca,
                                           radii=self.radii,
                                           ndim=self.box_dimension,
                                           boxvec=self.boxvec,
                                           use_periodic=True,
                                           use_frozen=False,
                                           use_cell_lists=True,
                                           reference_coords=self.x,
                                           rcut=self.rcut)
        self.pot_cells_N_frozen_Y = HS_WCA(eps=self.eps,
                                           sca=self.sca,
                                           radii=self.radii,
                                           ndim=self.box_dimension,
                                           boxvec=self.boxvec,
                                           use_periodic=True,
                                           use_frozen=True,
                                           use_cell_lists=False,
                                           frozen_atoms=self.frozen_atoms,
                                           reference_coords=self.x)
        self.pot_cells_Y_frozen_Y = HS_WCA(eps=self.eps,
                                           sca=self.sca,
                                           radii=self.radii,
                                           ndim=self.box_dimension,
                                           boxvec=self.boxvec,
                                           use_periodic=True,
                                           use_frozen=True,
                                           use_cell_lists=True,
                                           reference_coords=self.x,
                                           frozen_atoms=self.frozen_atoms,
                                           rcut=self.rcut)
        self.x_red = []
        for atom in xrange(self.nr_particles_total):
            if atom not in self.frozen_atoms:
                self.x_red.extend(self.x[atom * self.box_dimension:(atom + 1) *
                                         self.box_dimension])
        self.opt_NN = ModifiedFireCPP(self.x, self.pot_cells_N_frozen_N)
        self.opt_YN = ModifiedFireCPP(self.x, self.pot_cells_Y_frozen_N)
        self.opt_NY = ModifiedFireCPP(self.x_red, self.pot_cells_N_frozen_Y)
        self.opt_YY = ModifiedFireCPP(self.x_red, self.pot_cells_Y_frozen_Y)

    def test_energies(self):
        self.res_e_before_cells_N_frozen_N = self.opt_NN.get_result()
        self.res_e_before_cells_Y_frozen_N = self.opt_YN.get_result()
        self.res_e_before_cells_N_frozen_Y = self.opt_NY.get_result()
        self.res_e_before_cells_Y_frozen_Y = self.opt_YY.get_result()
        self.assertAlmostEqual(self.res_e_before_cells_N_frozen_N.energy,
                               self.res_e_before_cells_N_frozen_Y.energy,
                               delta=1e-10)
        self.assertAlmostEqual(self.res_e_before_cells_Y_frozen_N.energy,
                               self.res_e_before_cells_N_frozen_N.energy,
                               delta=1e-10)
        self.assertAlmostEqual(self.res_e_before_cells_N_frozen_N.energy,
                               self.res_e_before_cells_Y_frozen_Y.energy,
                               delta=1e-10)
        self.assertAlmostEqual(self.pot_cells_N_frozen_N.getEnergy(self.x),
                               self.pot_cells_Y_frozen_N.getEnergy(self.x),
                               delta=1e-10)

    def test_minimization(self):
        self.opt_NN.run()
        self.opt_YN.run()
        self.opt_NY.run()
        self.opt_YY.run()
        self.res_NN = self.opt_NN.get_result()
        self.res_YN = self.opt_YN.get_result()
        self.res_NY = self.opt_NY.get_result()
        self.res_YY = self.opt_YY.get_result()
        self.assertTrue(self.res_NN.success)
        self.assertTrue(self.res_YN.success)
        self.assertTrue(self.res_NY.success)
        self.assertTrue(self.res_YY.success)
        self.assertAlmostEqual(self.res_NY.energy,
                               self.res_YY.energy,
                               delta=1e-10)
        self.assertAlmostEqual(
            self.pot_cells_N_frozen_N.getEnergy(self.res_NN.coords),
            self.pot_cells_Y_frozen_N.getEnergy(self.res_YN.coords),
            delta=1e-10)
示例#12
0
class Config2D(object):
    def __init__(self, nparticles_x, amplitude):
        self.ndim = 2
        self.LX = nparticles_x
        self.LY = self.LX
        self.nparticles_x = nparticles_x
        self.N = self.nparticles_x**self.ndim
        self.dof = self.ndim * self.N
        self.amplitude = amplitude
        self.x = np.zeros(self.dof)
        for particle in xrange(self.N):
            pid = self.ndim * particle
            self.x[pid] = particle % self.LX
            self.x[pid + 1] = int(particle / self.LX)
        self.x_initial = np.asarray([
            xi + np.random.uniform(-self.amplitude, self.amplitude)
            for xi in self.x
        ])
        self.x_initial = np.reshape(self.x_initial, (self.N, 2))
        self.x_initial[:, 0] -= np.mean(self.x_initial[:, 0])
        self.x_initial[:, 1] -= np.mean(self.x_initial[:, 1])
        self.x_initial = self.x_initial.flatten()
        #self.radius = 0.3
        #self.sca = 1.5
        self.radius = 0.25
        self.sca = 1.8
        self.radii = np.ones(self.N) * self.radius
        self.eps = 1.0
        self.boxvec = np.array([self.LX, self.LY])
        self.potential = HS_WCA(use_periodic=use_periodic,
                                eps=self.eps,
                                sca=self.sca,
                                radii=self.radii.copy(),
                                ndim=self.ndim,
                                boxvec=self.boxvec.copy())
        self.potential_ = HS_WCA(use_periodic=use_periodic,
                                 eps=self.eps,
                                 sca=self.sca,
                                 radii=self.radii.copy(),
                                 ndim=self.ndim,
                                 boxvec=self.boxvec.copy())
        self.rcut = 2 * (1 + self.sca) * self.radius
        self.ncellx_scale = 1
        self.potential_cells = HS_WCA(use_periodic=use_periodic,
                                      use_cell_lists=True,
                                      eps=self.eps,
                                      sca=self.sca,
                                      radii=self.radii.copy(),
                                      boxvec=self.boxvec.copy(),
                                      rcut=self.rcut,
                                      ndim=self.ndim,
                                      ncellx_scale=self.ncellx_scale)
        self.potential_cells_ = HS_WCA(use_periodic=use_periodic,
                                       use_cell_lists=True,
                                       eps=self.eps,
                                       sca=self.sca,
                                       radii=self.radii.copy(),
                                       boxvec=self.boxvec.copy(),
                                       rcut=self.rcut,
                                       ndim=self.ndim,
                                       ncellx_scale=self.ncellx_scale)
        self.tol = 1e-7
        self.maxstep = np.amax(self.radii)
        self.nstepsmax = int(1e6)
        assert (self.boxvec[0] == self.boxvec[1])
        print "x_initial energy:", self.potential.getEnergy(self.x_initial)
        print "x_initial cells energy:", self.potential_cells.getEnergy(
            self.x_initial)
        assert (self.potential.getEnergy(
            self.x_initial) == self.potential_.getEnergy(self.x_initial))
        assert (self.potential_cells.getEnergy(
            self.x_initial) == self.potential_cells_.getEnergy(self.x_initial))
        #assert abs(self.potential.getEnergy(self.x_initial) - self.potential_cells.getEnergy(self.x_initial)) < 1e-10
        assert np.allclose(self.potential.getEnergy(self.x_initial),
                           self.potential_cells.getEnergy(self.x_initial),
                           rtol=1e-10)
        print self.boxvec
        #plot_disks(self.x_initial, self.radii, self.boxvec, sca=self.sca)

    def optimize(self, nr_samples=1):
        self.optimizer = ModifiedFireCPP(self.x_initial.copy(),
                                         self.potential,
                                         dtmax=1,
                                         maxstep=self.maxstep,
                                         tol=self.tol,
                                         nsteps=1e8,
                                         verbosity=-1,
                                         iprint=-1)
        self.optimizer_ = LBFGS_CPP(self.x_initial.copy(), self.potential_)
        self.optimizer_cells = ModifiedFireCPP(self.x_initial.copy(),
                                               self.potential_cells,
                                               dtmax=1,
                                               maxstep=self.maxstep,
                                               tol=self.tol,
                                               nsteps=1e8,
                                               verbosity=-1,
                                               iprint=-1)
        self.optimizer_cells_ = LBFGS_CPP(self.x_initial.copy(),
                                          self.potential_cells_)
        print "initial E, x:", self.potential.getEnergy(self.x_initial.copy())
        print "initial E, x_:", self.potential_cells.getEnergy(
            self.x_initial.copy())

        t0 = time.time()
        print "self.optimizer.run(self.nstepsmax)", self.nstepsmax
        self.optimizer.run(self.nstepsmax)
        self.res_x_final = self.optimizer.get_result()
        t1 = time.time()
        self.optimizer_cells.run(self.nstepsmax)
        self.res_x_final_cells = self.optimizer_cells.get_result()
        t2 = time.time()

        self.x_final = self.res_x_final.coords
        self.x_final_cells = self.res_x_final_cells.coords
        print "fire final E, x:", self.optimizer.get_result().energy
        print "fire final E, x_cells:", self.optimizer_cells.get_result(
        ).energy
        print "fire final E, plain: ", self.potential.getEnergy(self.x_final)
        print "fire final E, cell: ", self.potential_cells.getEnergy(
            self.x_final_cells)
        print "fire number of particles:", self.N
        print "fire time no cell lists:", t1 - t0, "sec"
        print "fire time cell lists:", t2 - t1, "sec"
        print "fire ratio:", (t1 - t0) / (t2 - t1)

        if not self.res_x_final.success or not self.res_x_final_cells.success:
            print "-------------"
            print "res_x_final.rms:", self.res_x_final.rms
            print "res_x_final.nfev:", self.res_x_final.nfev
            print "res_x_final_cells.rms:", self.res_x_final_cells.rms
            print "res_x_final_cells.nfev:", self.res_x_final_cells.nfev
            print "self.res_x_final.success", self.res_x_final.success
            print "self.res_x_final_cells.success", self.res_x_final_cells.success
            print "-------------"
            plot_disks(self.x_initial, self.radii, self.boxvec, sca=self.sca)
            plot_disks(self.x_final, self.radii, self.boxvec, sca=self.sca)
            plot_disks(self.x_final_cells,
                       self.radii,
                       self.boxvec,
                       sca=self.sca)

        self.optimizer_.run(self.nstepsmax)
        self.res_x_final_ = self.optimizer_.get_result()
        t3 = time.time()
        self.optimizer_cells_.run(self.nstepsmax)
        self.res_x_final_cells_ = self.optimizer_cells_.get_result()
        t4 = time.time()

        self.x_final_ = self.res_x_final_.coords
        self.x_final_cells_ = self.res_x_final_cells_.coords
        print "lbfgs final E, x:", self.optimizer_.get_result().energy
        print "lbfgs final E, x_cells:", self.optimizer_cells_.get_result(
        ).energy
        print "lbfgs final E, plain: ", self.potential_.getEnergy(
            self.x_final_)
        print "lbfgs final E, cell: ", self.potential_cells_.getEnergy(
            self.x_final_cells_)
        print "lbfgs number of particles:", self.N
        print "lbfgs time no cell lists:", t3 - t2, "sec"
        print "lbfgs time cell lists:", t4 - t3, "sec"
        print "lbfgs ratio:", (t3 - t2) / (t4 - t3)

        if not self.res_x_final_.success or not self.res_x_final_cells_.success or not self.res_x_final.success or not self.res_x_final_cells.success:
            print "-------------"
            print "res_x_final_.rms:", self.res_x_final_.rms
            print "res_x_final_.nfev:", self.res_x_final_.nfev
            print "res_x_final_cells_.rms:", self.res_x_final_cells_.rms
            print "res_x_final_cells_.nfev:", self.res_x_final_cells_.nfev
            print "self.res_x_final_.success", self.res_x_final.success
            print "self.res_x_final_cells_.success", self.res_x_final_cells.success
            print "-------------"
            plot_disks(self.x_initial, self.radii, self.boxvec, sca=self.sca)
            plot_disks(self.x_final_, self.radii, self.boxvec, sca=self.sca)
            plot_disks(self.x_final_cells_,
                       self.radii,
                       self.boxvec,
                       sca=self.sca)

        assert (self.res_x_final.success)
        assert (self.res_x_final_cells.success)
        assert (self.res_x_final_.success)
        assert (self.res_x_final_cells_.success)

        for (xci, xi) in zip(self.x_final_cells, self.x_final):
            passed = (np.abs(xci - xi) < 1e-10)
            if (passed is False):
                print "xci", xci
                print "xi", xi
                assert (passed)
        print "energy no cell lists:", self.res_x_final.energy
        print "energy cell lists:", self.res_x_final_cells.energy
        self.t_ratio = (t1 - t0) / (t2 - t1)
        self.t_ratio_lbfgs = (t3 - t2) / (t4 - t3)
示例#13
0
class Config2DFrozenBoundary(object):
    def __init__(self, nparticles_x, amplitude):
        self.ndim = 2
        self.LX = nparticles_x
        self.LY = self.LX
        self.nparticles_x = nparticles_x
        self.N = self.nparticles_x**self.ndim
        self.amplitude = amplitude
        self.dof = self.ndim * self.N
        self.x = np.zeros(self.dof)
        self.frozen_atoms = []
        for particle in xrange(self.N):
            pid = self.ndim * particle
            xcoor = particle % self.LX
            ycoor = int(particle / self.LX)
            self.x[pid] = xcoor
            self.x[pid + 1] = ycoor
            if xcoor == 0 or xcoor == self.LX - 1 or ycoor == 0 or ycoor == self.LY - 1:
                self.frozen_atoms.append(particle)
        self.x_initial = copy.copy(self.x)
        for particle in xrange(self.N):
            if particle not in self.frozen_atoms:
                pid = self.ndim * particle
                self.x_initial[pid] += np.random.uniform(
                    -self.amplitude, self.amplitude)
                self.x_initial[pid + 1] += np.random.uniform(
                    -self.amplitude, self.amplitude)
        self.x_initial = np.reshape(self.x_initial, (self.N, 2))
        self.x_initial[:, 0] -= np.mean(self.x_initial[:, 0])
        self.x_initial[:, 1] -= np.mean(self.x_initial[:, 1])
        self.x_initial = self.x_initial.flatten()
        min_x = np.amin(self.x_initial)
        if min_x < 0:
            self.x_initial -= min_x
        #self.radius = 0.3
        #self.sca = 1.5
        self.radius = 0.25
        self.sca = 1.8
        self.radii = np.ones(self.N) * self.radius
        self.eps = 1.0
        max_edge = np.amax([
            np.amax(self.x_initial),
            np.abs(np.amin(self.x_initial))
        ]) + 2 * self.amplitude + (1 + self.sca) * self.radius
        self.boxvec = np.array([max_edge, max_edge])
        self.frozen_atoms1 = np.array(self.frozen_atoms)
        self.frozen_atoms2 = np.array(self.frozen_atoms)
        print "self.frozen_atoms1", self.frozen_atoms1
        self.potential = HS_WCA(use_frozen=True,
                                use_periodic=use_periodic_frozen,
                                reference_coords=self.x_initial,
                                frozen_atoms=self.frozen_atoms1,
                                eps=self.eps,
                                sca=self.sca,
                                radii=self.radii,
                                ndim=self.ndim,
                                boxvec=self.boxvec)
        self.rcut = 2 * (1 + self.sca) * self.radius
        self.ncellx_scale = 1.0
        self.potential_cells = HS_WCA(use_frozen=True,
                                      use_periodic=use_periodic_frozen,
                                      use_cell_lists=True,
                                      eps=self.eps,
                                      sca=self.sca,
                                      radii=self.radii,
                                      boxvec=self.boxvec,
                                      reference_coords=self.x_initial,
                                      rcut=self.rcut,
                                      ndim=self.ndim,
                                      ncellx_scale=self.ncellx_scale,
                                      frozen_atoms=self.frozen_atoms2)
        self.tol = 1e-7
        self.maxstep = np.amax(self.radii)
        self.nstepsmax = int(1e6)
        assert (self.boxvec[0] == self.boxvec[1])
        self.x_initial_red = reduce_coordinates(self.x_initial,
                                                self.frozen_atoms, self.ndim)
        print "x_initial energy:", self.potential.getEnergy(self.x_initial_red)
        print "x_initial cells energy:", self.potential_cells.getEnergy(
            self.x_initial_red)
        #assert abs(self.potential.getEnergy(self.x_initial_red) - self.potential_cells.getEnergy(self.x_initial_red)) < 1e-10
        assert np.allclose(self.potential.getEnergy(self.x_initial_red),
                           self.potential_cells.getEnergy(self.x_initial_red),
                           rtol=1e-10)
        print self.boxvec

    def optimize(self, nr_samples=1):
        self.x_initial_red = reduce_coordinates(self.x_initial,
                                                self.frozen_atoms, self.ndim)
        self.optimizer = ModifiedFireCPP(self.x_initial_red.copy(),
                                         self.potential,
                                         tol=self.tol,
                                         maxstep=self.maxstep)
        self.optimizer_ = LBFGS_CPP(self.x_initial_red.copy(), self.potential)
        self.optimizer_cells = ModifiedFireCPP(self.x_initial_red.copy(),
                                               self.potential_cells,
                                               tol=self.tol,
                                               maxstep=self.maxstep)
        self.optimizer_cells_ = LBFGS_CPP(self.x_initial_red.copy(),
                                          self.potential_cells)
        t0 = time.time()
        print "self.optimizer.run(self.nstepsmax)", self.nstepsmax
        self.optimizer.run(self.nstepsmax)
        self.res_x_final = self.optimizer.get_result()
        t1 = time.time()
        self.optimizer_cells.run(self.nstepsmax)
        self.res_x_final_cells = self.optimizer_cells.get_result()
        t2 = time.time()

        self.x_final = self.res_x_final.coords
        self.x_final_cells = self.res_x_final_cells.coords
        print "fire final E, x:", self.optimizer.get_result().energy
        print "fire final E, x_cells:", self.optimizer_cells.get_result(
        ).energy
        print "fire final E, plain: ", self.potential.getEnergy(self.x_final)
        print "fire final E, cell: ", self.potential_cells.getEnergy(
            self.x_final_cells)
        print "fire number of particles:", self.N
        print "fire time no cell lists:", t1 - t0, "sec"
        print "fire time cell lists:", t2 - t1, "sec"
        print "fire ratio:", (t1 - t0) / (t2 - t1)

        if not self.res_x_final.success or not self.res_x_final_cells.success:
            print "-------------"
            print "res_x_final.rms:", self.res_x_final.rms
            print "res_x_final.nfev:", self.res_x_final.nfev
            print "res_x_final_cells.rms:", self.res_x_final_cells.rms
            print "res_x_final_cells.nfev:", self.res_x_final_cells.nfev
            print "self.res_x_final.success", self.res_x_final.success
            print "self.res_x_final_cells.success", self.res_x_final_cells.success
            print "-------------"
            plot_disks(self.x_initial, self.radii, self.boxvec, sca=self.sca)
            plot_disks(self.x_final, self.radii, self.boxvec, sca=self.sca)
            plot_disks(self.x_final_cells,
                       self.radii,
                       self.boxvec,
                       sca=self.sca)

        self.optimizer_.run(self.nstepsmax)
        self.res_x_final_ = self.optimizer_.get_result()
        t3 = time.time()
        self.optimizer_cells_.run(self.nstepsmax)
        self.res_x_final_cells_ = self.optimizer_cells_.get_result()
        t4 = time.time()

        self.x_final_ = self.res_x_final_.coords
        self.x_final_cells_ = self.res_x_final_cells_.coords
        print "lbfgs final E, x:", self.optimizer_.get_result().energy
        print "lbfgs final E, x_cells:", self.optimizer_cells_.get_result(
        ).energy
        print "lbfgs final E, plain: ", self.potential.getEnergy(self.x_final_)
        print "lbfgs final E, cell: ", self.potential_cells.getEnergy(
            self.x_final_cells_)
        print "lbfgs number of particles:", self.N
        print "lbfgs time no cell lists:", t3 - t2, "sec"
        print "lbfgs time cell lists:", t4 - t3, "sec"
        print "lbfgs ratio:", (t3 - t2) / (t4 - t3)

        if not self.res_x_final_.success or not self.res_x_final_cells_.success or not self.res_x_final.success or not self.res_x_final_cells.success:
            print "-------------"
            print "res_x_final_.rms:", self.res_x_final_.rms
            print "res_x_final_.nfev:", self.res_x_final_.nfev
            print "res_x_final_cells_.rms:", self.res_x_final_cells_.rms
            print "res_x_final_cells_.nfev:", self.res_x_final_cells_.nfev
            print "self.res_x_final_.success", self.res_x_final.success
            print "self.res_x_final_cells_.success", self.res_x_final_cells.success
            print "-------------"
            plot_disks(self.x_initial, self.radii, self.boxvec, sca=self.sca)
            plot_disks(self.x_final_, self.radii, self.boxvec, sca=self.sca)
            plot_disks(self.x_final_cells_,
                       self.radii,
                       self.boxvec,
                       sca=self.sca)

        assert (self.res_x_final.success)
        assert (self.res_x_final_cells.success)
        assert (self.res_x_final_.success)
        assert (self.res_x_final_cells_.success)
        for (xci, xi) in zip(self.x_final_cells, self.x_final):
            passed = (np.abs(xci - xi) < 1e-10)
            if (passed is False):
                print "xci", xci
                print "xi", xi
                assert (passed)
        print "energy no cell lists:", self.res_x_final.energy
        print "energy cell lists:", self.res_x_final_cells.energy
        self.t_ratio = (t1 - t0) / (t2 - t1)
        self.t_ratio_lbfgs = (t3 - t2) / (t4 - t3)
示例#14
0
class Config2DFrozenBoundary(object):
    def __init__(self, nparticles_x, amplitude):
        self.ndim = 2
        self.LX = nparticles_x
        self.LY = self.LX
        self.nparticles_x = nparticles_x
        self.N = self.nparticles_x ** self.ndim
        self.amplitude = amplitude
        self.dof = self.ndim * self.N
        self.x = np.zeros(self.dof)
        self.frozen_atoms = []
        for particle in xrange(self.N):
            pid = self.ndim * particle
            xcoor = particle % self.LX
            ycoor = int(particle / self.LX)
            self.x[pid] = xcoor
            self.x[pid + 1] = ycoor
            if xcoor == 0 or xcoor == self.LX - 1 or ycoor == 0 or ycoor == self.LY - 1:
                self.frozen_atoms.append(particle)
        self.x_initial = copy.copy(self.x)
        for particle in xrange(self.N):
            if particle not in self.frozen_atoms:
                pid = self.ndim * particle
                self.x_initial[pid] += np.random.uniform(- self.amplitude, self.amplitude)
                self.x_initial[pid + 1] += np.random.uniform(- self.amplitude, self.amplitude)
        self.x_initial = np.reshape(self.x_initial, (self.N,2))
        self.x_initial[:,0] -= np.mean(self.x_initial[:,0])
        self.x_initial[:,1] -= np.mean(self.x_initial[:,1])
        self.x_initial = self.x_initial.flatten()
        min_x = np.amin(self.x_initial)
        if min_x < 0:
            self.x_initial -= min_x
        #self.radius = 0.3
        #self.sca = 1.5
        self.radius = 0.25
        self.sca = 1.8
        self.radii = np.ones(self.N) * self.radius
        self.eps = 1.0
        max_edge = np.amax([np.amax(self.x_initial), np.abs(np.amin(self.x_initial))]) + 2 * self.amplitude + (1 + self.sca) * self.radius
        self.boxvec = np.array([max_edge, max_edge])
        self.frozen_atoms1 = np.array(self.frozen_atoms)
        self.frozen_atoms2 = np.array(self.frozen_atoms)
        print "self.frozen_atoms1", self.frozen_atoms1
        self.potential = HS_WCA(use_frozen=True, use_periodic=use_periodic_frozen,
                         reference_coords=self.x_initial,
                         frozen_atoms=self.frozen_atoms1,
                         eps=self.eps, sca=self.sca, radii=self.radii,
                         ndim=self.ndim, boxvec=self.boxvec)
        self.rcut =  2 * (1 + self.sca) * self.radius
        self.ncellx_scale = 1.0
        self.potential_cells = HS_WCA(use_frozen=True,
                               use_periodic=use_periodic_frozen, use_cell_lists=True,
                               eps=self.eps, sca=self.sca,
                               radii=self.radii, boxvec=self.boxvec,
                               reference_coords=self.x_initial,
                               rcut=self.rcut, ndim=self.ndim,
                               ncellx_scale=self.ncellx_scale,
                               frozen_atoms=self.frozen_atoms2)
        self.tol = 1e-7
        self.maxstep = np.amax(self.radii)
        self.nstepsmax = int(1e6)
        assert(self.boxvec[0]==self.boxvec[1])
        self.x_initial_red = reduce_coordinates(self.x_initial,self.frozen_atoms,self.ndim)
        print "x_initial energy:", self.potential.getEnergy(self.x_initial_red)
        print "x_initial cells energy:", self.potential_cells.getEnergy(self.x_initial_red)
        #assert abs(self.potential.getEnergy(self.x_initial_red) - self.potential_cells.getEnergy(self.x_initial_red)) < 1e-10
        assert np.allclose(self.potential.getEnergy(self.x_initial_red), self.potential_cells.getEnergy(self.x_initial_red), rtol=1e-10)
        print self.boxvec
    
    def optimize(self, nr_samples=1):
        self.x_initial_red = reduce_coordinates(self.x_initial,self.frozen_atoms,self.ndim)
        self.optimizer = ModifiedFireCPP(self.x_initial_red.copy(), self.potential, tol = self.tol, maxstep = self.maxstep)
        self.optimizer_ = LBFGS_CPP(self.x_initial_red.copy(), self.potential)
        self.optimizer_cells = ModifiedFireCPP(self.x_initial_red.copy(), self.potential_cells, tol = self.tol, maxstep = self.maxstep)
        self.optimizer_cells_ = LBFGS_CPP(self.x_initial_red.copy(), self.potential_cells)
        t0 = time.time()
        print "self.optimizer.run(self.nstepsmax)", self.nstepsmax
        self.optimizer.run(self.nstepsmax)
        self.res_x_final = self.optimizer.get_result()
        t1 = time.time()
        self.optimizer_cells.run(self.nstepsmax)
        self.res_x_final_cells = self.optimizer_cells.get_result()
        t2 = time.time()
                
        self.x_final = self.res_x_final.coords
        self.x_final_cells = self.res_x_final_cells.coords
        print "fire final E, x:", self.optimizer.get_result().energy
        print "fire final E, x_cells:", self.optimizer_cells.get_result().energy
        print "fire final E, plain: ", self.potential.getEnergy(self.x_final)
        print "fire final E, cell: ", self.potential_cells.getEnergy(self.x_final_cells)
        print "fire number of particles:", self.N
        print "fire time no cell lists:", t1 - t0, "sec"
        print "fire time cell lists:", t2 - t1, "sec"
        print "fire ratio:", (t1 - t0) / (t2 - t1)
        
        if not self.res_x_final.success or not self.res_x_final_cells.success:
            print "-------------"
            print "res_x_final.rms:", self.res_x_final.rms
            print "res_x_final.nfev:", self.res_x_final.nfev
            print "res_x_final_cells.rms:", self.res_x_final_cells.rms
            print "res_x_final_cells.nfev:", self.res_x_final_cells.nfev
            print "self.res_x_final.success", self.res_x_final.success
            print "self.res_x_final_cells.success", self.res_x_final_cells.success
            print "-------------"
            plot_disks(self.x_initial, self.radii, self.boxvec, sca=self.sca)
            plot_disks(self.x_final, self.radii, self.boxvec, sca=self.sca)
            plot_disks(self.x_final_cells, self.radii, self.boxvec, sca=self.sca)
                
        self.optimizer_.run(self.nstepsmax)
        self.res_x_final_ = self.optimizer_.get_result()
        t3 = time.time()
        self.optimizer_cells_.run(self.nstepsmax)
        self.res_x_final_cells_ = self.optimizer_cells_.get_result()
        t4 = time.time()
        
        self.x_final_ = self.res_x_final_.coords
        self.x_final_cells_ = self.res_x_final_cells_.coords
        print "lbfgs final E, x:", self.optimizer_.get_result().energy
        print "lbfgs final E, x_cells:", self.optimizer_cells_.get_result().energy
        print "lbfgs final E, plain: ", self.potential.getEnergy(self.x_final_)
        print "lbfgs final E, cell: ", self.potential_cells.getEnergy(self.x_final_cells_)
        print "lbfgs number of particles:", self.N
        print "lbfgs time no cell lists:", t3 - t2, "sec"
        print "lbfgs time cell lists:", t4 - t3, "sec"
        print "lbfgs ratio:", (t3 - t2) / (t4 - t3)
        
        if not self.res_x_final_.success or not self.res_x_final_cells_.success or not self.res_x_final.success or not self.res_x_final_cells.success:
            print "-------------"
            print "res_x_final_.rms:", self.res_x_final_.rms
            print "res_x_final_.nfev:", self.res_x_final_.nfev
            print "res_x_final_cells_.rms:", self.res_x_final_cells_.rms
            print "res_x_final_cells_.nfev:", self.res_x_final_cells_.nfev
            print "self.res_x_final_.success", self.res_x_final.success
            print "self.res_x_final_cells_.success", self.res_x_final_cells.success
            print "-------------"
            plot_disks(self.x_initial, self.radii, self.boxvec, sca=self.sca)
            plot_disks(self.x_final_, self.radii, self.boxvec, sca=self.sca)
            plot_disks(self.x_final_cells_, self.radii, self.boxvec, sca=self.sca)
        
        assert(self.res_x_final.success)
        assert(self.res_x_final_cells.success)
        assert(self.res_x_final_.success)
        assert(self.res_x_final_cells_.success)
        for (xci, xi) in zip(self.x_final_cells, self.x_final):
            passed = (np.abs(xci - xi) < 1e-10)
            if (passed is False):
                print "xci", xci
                print "xi", xi
                assert(passed)
        print "energy no cell lists:", self.res_x_final.energy
        print "energy cell lists:", self.res_x_final_cells.energy
        self.t_ratio = (t1 - t0) / (t2 - t1)
        self.t_ratio_lbfgs = (t3 - t2) / (t4 - t3)
示例#15
0
def modifiedfire_cpp(coords, pot, **kwargs):
    modifiedfire = ModifiedFireCPP(coords, pot, **kwargs)
    return modifiedfire.run()
示例#16
0
class Config2D(object):
    def __init__(self, nparticles_x, amplitude):
        self.ndim = 2
        self.LX = nparticles_x
        self.LY = self.LX
        self.nparticles_x = nparticles_x
        self.N = self.nparticles_x ** self.ndim
        self.dof = self.ndim * self.N
        self.amplitude = amplitude
        self.x = np.zeros(self.dof)
        for particle in xrange(self.N):
            pid = self.ndim * particle
            self.x[pid] = particle % self.LX
            self.x[pid + 1] = int(particle / self.LX)
        self.x_initial = np.asarray([xi + np.random.uniform(- self.amplitude, self.amplitude) for xi in self.x])
        self.x_initial = np.reshape(self.x_initial, (self.N,2))
        self.x_initial[:,0] -= np.mean(self.x_initial[:,0])
        self.x_initial[:,1] -= np.mean(self.x_initial[:,1])
        self.x_initial = self.x_initial.flatten()  
        #self.radius = 0.3
        #self.sca = 1.5
        self.radius = 0.25
        self.sca = 1.8
        self.radii = np.ones(self.N) * self.radius
        self.eps = 1.0
        self.boxvec = np.array([self.LX, self.LY])
        self.potential = HS_WCA(use_periodic=use_periodic, eps=self.eps,
                         sca=self.sca, radii=self.radii.copy(), ndim=self.ndim, boxvec=self.boxvec.copy())
        self.potential_ = HS_WCA(use_periodic=use_periodic, eps=self.eps,
                         sca=self.sca, radii=self.radii.copy(), ndim=self.ndim, boxvec=self.boxvec.copy())
        self.rcut = 2 * (1 + self.sca) * self.radius
        self.ncellx_scale = 1
        self.potential_cells = HS_WCA(use_periodic=use_periodic,
                               use_cell_lists=True, eps=self.eps,
                               sca=self.sca, radii=self.radii.copy(),
                               boxvec=self.boxvec.copy(),
                               rcut=self.rcut, ndim=self.ndim,
                               ncellx_scale=self.ncellx_scale)
        self.potential_cells_ = HS_WCA(use_periodic=use_periodic,
                                use_cell_lists=True, eps=self.eps,
                                sca=self.sca, radii=self.radii.copy(),
                                boxvec=self.boxvec.copy(),
                                rcut=self.rcut, ndim=self.ndim,
                                ncellx_scale=self.ncellx_scale)
        self.tol = 1e-7
        self.maxstep = np.amax(self.radii)
        self.nstepsmax = int(1e6)
        assert(self.boxvec[0]==self.boxvec[1])
        print "x_initial energy:", self.potential.getEnergy(self.x_initial)
        print "x_initial cells energy:", self.potential_cells.getEnergy(self.x_initial)
        assert(self.potential.getEnergy(self.x_initial) == self.potential_.getEnergy(self.x_initial))
        assert(self.potential_cells.getEnergy(self.x_initial) == self.potential_cells_.getEnergy(self.x_initial))
        #assert abs(self.potential.getEnergy(self.x_initial) - self.potential_cells.getEnergy(self.x_initial)) < 1e-10
        assert np.allclose(self.potential.getEnergy(self.x_initial), self.potential_cells.getEnergy(self.x_initial), rtol=1e-10)
        print self.boxvec
        #plot_disks(self.x_initial, self.radii, self.boxvec, sca=self.sca)
        
    def optimize(self, nr_samples = 1):
        self.optimizer =  ModifiedFireCPP(self.x_initial.copy(), self.potential,
                                         dtmax=1, maxstep=self.maxstep,
                                         tol=self.tol, nsteps=1e8, verbosity=-1, iprint=-1)
        self.optimizer_ = LBFGS_CPP(self.x_initial.copy(), self.potential_)
        self.optimizer_cells = ModifiedFireCPP(self.x_initial.copy(), self.potential_cells,
                                         dtmax=1, maxstep=self.maxstep,
                                         tol=self.tol, nsteps=1e8, verbosity=-1, iprint=-1)
        self.optimizer_cells_ = LBFGS_CPP(self.x_initial.copy(), self.potential_cells_)
        print "initial E, x:", self.potential.getEnergy(self.x_initial.copy())
        print "initial E, x_:", self.potential_cells.getEnergy(self.x_initial.copy())
        
        t0 = time.time()
        print "self.optimizer.run(self.nstepsmax)", self.nstepsmax
        self.optimizer.run(self.nstepsmax)
        self.res_x_final = self.optimizer.get_result()
        t1 = time.time()
        self.optimizer_cells.run(self.nstepsmax)
        self.res_x_final_cells = self.optimizer_cells.get_result()
        t2 = time.time()
                
        self.x_final = self.res_x_final.coords
        self.x_final_cells = self.res_x_final_cells.coords
        print "fire final E, x:", self.optimizer.get_result().energy
        print "fire final E, x_cells:", self.optimizer_cells.get_result().energy
        print "fire final E, plain: ", self.potential.getEnergy(self.x_final)
        print "fire final E, cell: ", self.potential_cells.getEnergy(self.x_final_cells)
        print "fire number of particles:", self.N
        print "fire time no cell lists:", t1 - t0, "sec"
        print "fire time cell lists:", t2 - t1, "sec"
        print "fire ratio:", (t1 - t0) / (t2 - t1)
        
        if not self.res_x_final.success or not self.res_x_final_cells.success:
            print "-------------"
            print "res_x_final.rms:", self.res_x_final.rms
            print "res_x_final.nfev:", self.res_x_final.nfev
            print "res_x_final_cells.rms:", self.res_x_final_cells.rms
            print "res_x_final_cells.nfev:", self.res_x_final_cells.nfev
            print "self.res_x_final.success", self.res_x_final.success
            print "self.res_x_final_cells.success", self.res_x_final_cells.success
            print "-------------"
            plot_disks(self.x_initial, self.radii, self.boxvec, sca=self.sca)
            plot_disks(self.x_final, self.radii, self.boxvec, sca=self.sca)
            plot_disks(self.x_final_cells, self.radii, self.boxvec, sca=self.sca)
                
        self.optimizer_.run(self.nstepsmax)
        self.res_x_final_ = self.optimizer_.get_result()
        t3 = time.time()
        self.optimizer_cells_.run(self.nstepsmax)
        self.res_x_final_cells_ = self.optimizer_cells_.get_result()
        t4 = time.time()
        
        self.x_final_ = self.res_x_final_.coords
        self.x_final_cells_ = self.res_x_final_cells_.coords
        print "lbfgs final E, x:", self.optimizer_.get_result().energy
        print "lbfgs final E, x_cells:", self.optimizer_cells_.get_result().energy
        print "lbfgs final E, plain: ", self.potential_.getEnergy(self.x_final_)
        print "lbfgs final E, cell: ", self.potential_cells_.getEnergy(self.x_final_cells_)
        print "lbfgs number of particles:", self.N
        print "lbfgs time no cell lists:", t3 - t2, "sec"
        print "lbfgs time cell lists:", t4 - t3, "sec"
        print "lbfgs ratio:", (t3 - t2) / (t4 - t3)
        
        if not self.res_x_final_.success or not self.res_x_final_cells_.success or not self.res_x_final.success or not self.res_x_final_cells.success:
            print "-------------"
            print "res_x_final_.rms:", self.res_x_final_.rms
            print "res_x_final_.nfev:", self.res_x_final_.nfev
            print "res_x_final_cells_.rms:", self.res_x_final_cells_.rms
            print "res_x_final_cells_.nfev:", self.res_x_final_cells_.nfev
            print "self.res_x_final_.success", self.res_x_final.success
            print "self.res_x_final_cells_.success", self.res_x_final_cells.success
            print "-------------"
            plot_disks(self.x_initial, self.radii, self.boxvec, sca=self.sca)
            plot_disks(self.x_final_, self.radii, self.boxvec, sca=self.sca)
            plot_disks(self.x_final_cells_, self.radii, self.boxvec, sca=self.sca)
        
        assert(self.res_x_final.success)
        assert(self.res_x_final_cells.success)
        assert(self.res_x_final_.success)
        assert(self.res_x_final_cells_.success)
        
        for (xci, xi) in zip(self.x_final_cells, self.x_final):
            passed = (np.abs(xci - xi) < 1e-10)
            if (passed is False):
                print "xci", xci
                print "xi", xi
                assert(passed)
        print "energy no cell lists:", self.res_x_final.energy
        print "energy cell lists:", self.res_x_final_cells.energy
        self.t_ratio = (t1 - t0) / (t2 - t1)
        self.t_ratio_lbfgs = (t3 - t2) / (t4 - t3)
示例#17
0
def modifiedfire_cpp(coords, pot, **kwargs):
    modifiedfire = ModifiedFireCPP(coords, pot, **kwargs)
    return modifiedfire.run()