示例#1
0
def read_class_nqvar_red(datadir='./data',
                         pfile='qvar.dat',
                         proc=0,
                         verbose=False):
    dims = pc.read_dim(datadir, proc)
    qdims = pc.read_qdim(datadir)
    nqpar = read_qpar(datadir=datadir, pfile=pfile, proc=proc)
    if (verbose):
        #print npar_loc,' particles on processor: ',proc # Python 2
        print(nqpar + 'massive particles on processor: ' + proc)
    mvars = pdims.mqaux + pdims.mqvar
    ltot = nqpar * mvars
    if (dims.precision == 'S'):
        REAL = '<f4'
    else:
        REAL = '<f8'

    array_shape = np.dtype([('header', '<i4'), ('nqpar', '<i4'),
                            ('footer', '<i4'), ('header2', '<i4'),
                            ('ipar', '<i4', nqpar), ('footer2', '<i4'),
                            ('header3', '<i4'), ('fq', REAL, ltot),
                            ('footer3', '<i4'), ('header4', '<i4'),
                            ('t', REAL), ('x', REAL, dims.mx),
                            ('y', REAL, dims.my), ('z', REAL, dims.mz),
                            ('dx', REAL), ('dy', REAL), ('dz', REAL),
                            ('footer4', '<i4')])

    p_data = np.fromfile(datadir + '/proc' + str(proc) + '/' + pfile,
                         dtype=array_shape)
    partpars = np.array(p_data['fq'].reshape(mvars, npar_loc))
    ipar = np.squeeze(p_data['ipar'].reshape(p_data['ipar'].size))
    return ipar, partpars
示例#2
0
def loadData(field, extension):
    global data

    # check if data has already been loaded
    if (field + extension in data.loaded) == False:
        data.slices[field + extension], data.t = pc.read_slices(
            datadir='data', field=field, extension=extension, proc=-1)
        data.dim[field + extension] = pc.read_dim()  # system dimensions
        data.param[field + extension] = pc.read_param(
            quiet=True)  # system parameters
        data.loaded.add(field + extension)
示例#3
0
def read_class_nqvar(datadir='data', pfile='', proc=0, verbose=False):
    dims = pc.read_dim(datadir, proc)
    if (dims.precision == 'S'):
        REAL = '<f4'
    else:
        REAL = '<f8'
    qdims = pc.read_qdim(datadir)
    nqpars = qdims.nqpar
    mqvars = qdims.mqvar
    ltot = nqpars * mqvars
    if (verbose):
        print(nqpars + 'massqvarve particles on processor: ' + proc)
    # MR modified array_shape
    array_shape = np.dtype([('header', '<i4'), ('ipar', '<i4'),
                            ('footer', '<i4'), ('header2', '<i4'),
                            ('fq', REAL, ltot), ('footer2', '<i4'),
                            ('header3', '<i4'), ('t', REAL),
                            ('footer3', '<i4')])
    p_data = np.fromfile(datadir + '/proc0/' + pfile, dtype=array_shape)
    ipar = np.squeeze(p_data[0]['ipar'].reshape(p_data[0]['ipar'].size))
    partpars = np.array(p_data[0]['fq'].reshape(mqvars, nqpars))
    t = p_data[0]['t']
    return ipar, partpars, t
示例#4
0
def pc2npz(ivar=-1, datadir="data", files="all", quiet=True, trimall=True):
    """Convert pencil outputs to npz files.

    Pencil files can be extremely large, making it difficult to transfer files from a remote location to your local machine.
    This function helps mitigate that issue by reading these large files and converting them into npz files that are much 
    easier to transfer. 

    Inputs:
        ivar (int) -- The specific VAR and PVAR file you would like to read. Defaults to -1 (i.e., read var.dat, pvar.dat)
        datadir (str) -- Path to the data directory. Defaults to "data".
        quiet (bool) -- Suppress much of the print statements when reading the files. Defaults to True
        trimall (bool) -- Trim the ghost zones from the f array. Defaults to True.
    
    Returns:
         None

    """

    datadir2 = datadir + "/"

    if ivar < 0:
        varfile  = "var.dat"
        pvarfile = "pvar.dat"
        ts_file = "ts.npz"
        dim_file = "dim.npz"
        grid_file = "grid.npz"
        ff_file = "ff.npz"
        fp_file = "fp.npz"
    else:
        varfile  = "VAR" + str(ivar)
        pvarfile = "PVAR" + str(ivar)
        ts_file = "ts{}.npz".format(ivar)
        dim_file = "dim{}.npz".format(ivar)
        grid_file = "grid{}.npz".format(ivar)
        ff_file = "ff{}.npz".format(ivar)
        fp_file = "fp{}.npz".format(ivar)

    if "ts" in files or "all" in files:
        print("Reading time series")
        print(" ")
        ts = ReadTimeSeries(datadir=datadir)
        print(" ")
        ts_vars = vars(ts)
        print("Saving time series as {}".format(ts_file))
        np.savez(ts_file, **ts_vars)
        print("...")
        print("...")

    if "dim" in files or "all" in files:
        print("Reading dim files")
        print(" ")
        dim = read_dim(datadir=datadir2)
        print(" ")
        dim_vars = vars(dim)
        print("Saving dim files as {}".format(dim_file))
        np.savez(dim_file, **dim_vars)
        print("...")
        print("...")

    if "grid" in files or "all" in files:

        print("Reading grid files")
        print(" ")
        grid = read_grid(datadir=datadir2, quiet=quiet)
        print(" ")
        grid_vars = vars(grid)
        print("Saving grid files as {}".format(grid_file))
        np.savez(grid_file, **grid_vars)
        print("...")
        print("...")
        print("Finished...")

    if "ff" in files or "all" in files:
        print("Reading {} (this might take a while) ...".format(varfile))
        print(" ")
        var = read_var(datadir=datadir, trimall=trimall, quiet=quiet, varfile=varfile)
        print(" ")
        var_vars = vars(var)
        print("Saving var files as {}".format(ff_file))
        np.savez(ff_file, **var_vars)
        print("...")
        print("...")

    if "fp" in files or "all" in files:
        print("Reading {} (this might take a while) ...".format(pvarfile))
        print(" ")
        pvar = read_pvar(datadir=datadir, varfile=pvarfile)
        print(" ")
        pvar_vars = vars(pvar)
        print("Saving pvar files as {}".format(fp_file))
        np.savez(fp_file, **pvar_vars)
        print("...")
        print("...")
示例#5
0
def read_class_npvar_red(datadir='./data',
	pfile='pvar.dat',
	proc=0,
	verbose=False,
	reduce_to=-1,
	set_reduce=-1):
		
	dims = pc.read_dim(datadir,proc)
	pdims = pc.read_pdim(datadir)
	npar_loc = read_npar_loc(datadir=datadir,pfile=pfile,proc=proc)
	#
	# the Next bit calculates how many particles are written for all but
	# the last processor. The last processor is assigned a number of particles
	# to write so that the required number of particles is obtained
	#
	if (reduce_to > 0):
		if (set_reduce <= 0):
			reductionfactor = float(reduce_to)/float(pdims.npar)
			npar_red = int(round(npar_loc*reductionfactor))
		else:
			npar_red = set_reduce
		if (verbose):
			#print 'reducing '+str(npar_loc)+' to '+str(npar_red)+ ' on proc'+str(proc) 
			print('reducing {} to {} on proc {}'.format(
							  npar_loc, npar_red, proc))
		written_parts=npar_red
	else:
		written_parts=set_reduce
	
	if (verbose):
		#print npar_loc,' particles on processor: ',proc # Python 2
		print(str(npar_loc)+' particles on processor: '+str(proc))
	mvars = pdims.mpaux+pdims.mpvar
	ltot = npar_loc*mvars
	if (dims.precision == 'S'):
		REAL = '<f4'
	else:
		REAL = '<f8'

	array_shape= np.dtype([('header','<i4'),
							('npar_loc','<i4'),
							('footer','<i4'),
							('header2','<i4'),
							('ipar','<i4',npar_loc),
							('footer2','<i4'),
							('header3','<i4'),
							('fp',REAL,ltot),
							('footer3','<i4'),
							('header4','<i4'),
							('t',REAL),
							('x',REAL,dims.mx),
							('y',REAL,dims.my),
							('z',REAL,dims.mz),
							('dx',REAL),
							('dy',REAL),
							('dz',REAL),
							('footer4','<i4')])
	
	
	p_data = np.fromfile(datadir+'/proc'+str(proc)+'/'+pfile,dtype=array_shape)
	partpars = np.array(p_data['fp'].reshape(mvars,npar_loc))
	
	if (reduce_to>0):
		particle_list = map(lambda x: int(x),np.linspace(0.0,npar_loc,num=npar_red,endpoint=False))
		red_parts = partpars[:,particle_list]
		red_shape = np.dtype([('header','<i4'),
							('npar_loc','<i4'),
							('footer','<i4'),
							('header2','<i4'),
							('ipar','<i4',(npar_red),),
							('footer2','<i4'),
							('header3','<i4'),
							('fp',REAL,npar_red*mvars),
							('footer3','<i4'),
							('header4','<i4'),
							('t',REAL),
							('x',REAL,(dims.mx,)),
							('y',REAL,(dims.my,)),
							('z',REAL,(dims.mz,)),
							('dx',REAL),
							('dy',REAL),
							('dz',REAL),
							('footer4','<i4')])
							
		p_red =np.array([(4,
			npar_red,
			4,
			(npar_red*4),
			(np.squeeze(p_data['ipar'][0,:npar_red])),
			(npar_red*4),
			(npar_red*mvars*8),
			(np.squeeze(np.ravel(red_parts))),
			(npar_red*mvars*8),
			(p_data['header4'][0]),
			(p_data['t']),
			(p_data['x']),
			(p_data['y']),
			(p_data['z']),
			(p_data['dx']),
			(p_data['dy']),
			(p_data['dz']),
			p_data['footer4'][0])
			],dtype=red_shape)
			
		p_red.tofile(datadir+'/proc'+str(proc)+'/'+str(reduce_to)+'_'+pfile)
		
	ipar = np.squeeze(p_data['ipar'].reshape(p_data['ipar'].size))
	return ipar, partpars, written_parts
示例#6
0
def calc_tensors(datatopdir,
                 lskip_zeros=False,
                 datadir='data/',
                 rank=0,
                 size=1,
                 comm=None,
                 proc=[0],
                 l_mpi=True,
                 iuxmxy=0,
                 irhomxy=7,
                 iTTmxy=6,
                 first_alpha=9,
                 l_correction=False,
                 t_correction=0.,
                 fskip=2,
                 mskip=1,
                 trange=(0, None),
                 tindex=(0, None, 1),
                 yindex=[]):
    nt = None
    alltmp = 100000
    dim = pc.read_dim()
    gc.garbage
    if len(yindex) == 0:
        iy = np.arange(dim.ny)
    else:
        iy = yindex
    os.chdir(datatopdir)  # return to working directory
    av = []
    if l_mpi:
        from mpi4py import MPI
        if proc.size < dim.nprocz:
            print('rank {}: proc.size {} <  dim.nprocz {}'.format(
                rank, proc.size, dim.nprocz))
            yproc = proc[0] / dim.nprocz
            aav, time = pc.read_zaver(datadir,
                                      trange=trange,
                                      tindex=tindex,
                                      proc=yproc)
            tmp = time.size
        else:
            print('rank {}: proc.size {} >= dim.nprocz {}'.format(
                rank, proc.size, dim.nprocz))
            for iproc in range(0, proc.size, dim.nprocz):
                if iproc == 0:
                    aav, time = pc.read_zaver(datadir,
                                              trange=trange,
                                              tindex=tindex,
                                              proc=proc[iproc] / dim.nprocz)
                    tmp = time.size
                else:
                    aav, time = pc.read_zaver(datadir,
                                              proc=proc[iproc] / dim.nprocz)
                    tmp = min(time.size, tmp)
    else:
        av, time = pc.read_zaver(datadir, trange=trange, tindex=tindex)
    gc.garbage
    if l_mpi:
        print('rank {}: tmp {}'.format(rank, tmp))
        if rank != 0:
            comm.send(tmp, dest=0, tag=rank)
        else:
            for irank in range(1, size):
                tmp = comm.recv(source=irank, tag=irank)
                alltmp = min(alltmp, tmp)
        nt = comm.bcast(alltmp, root=0)
        print('rank {}: nt {}'.format(rank, nt))
        if proc.size < dim.nprocz:
            yndx = iy - yproc * (dim.nygrid / dim.nprocy)
            print('rank {}: yndx[0] {}'.format(rank, yndx[0]))
            av = aav[:nt, :, yndx, :]
        else:
            av = aav[:nt]
            for iproc in range(dim.nprocz, proc.size, dim.nprocz):
                aav, time = pc.read_zaver(datadir,
                                          tindex=(0, nt, 1),
                                          proc=proc[iproc] / dim.nprocz)
                av = np.concatenate((av, aav), axis=2)
        aav = []
    print('rank {}: loaded av'.format(rank))
    #where testfield calculated under old incorrect spec apply correction
    gc.garbage
    if l_correction:
        itcorr = np.where(time < t_correction)[0]
        av[itcorr, first_alpha + 2] *= -dim.nprocz / (dim.nprocz - 2.)
        for j in range(0, 3):
            av[itcorr, first_alpha + 5 + j] *= -dim.nprocz / (dim.nprocz - 2.)
        av[itcorr, first_alpha + 11] *= -dim.nprocz / (dim.nprocz - 2.)
        for j in range(0, 3):
            av[itcorr, first_alpha + 14 + j] *= -dim.nprocz / (dim.nprocz - 2.)
        av[itcorr, first_alpha + 20] *= -dim.nprocz / (dim.nprocz - 2.)
        for j in range(0, 3):
            av[itcorr, first_alpha + 23 + j] *= -dim.nprocz / (dim.nprocz - 2.)
    #factor by which to rescale code time to years
    trescale = 0.62 / 2.7e-6 / (365. * 86400.)  #0.007281508
    time *= trescale
    grid = pc.read_grid(datadir, trim=True, quiet=True)
    r, theta = np.meshgrid(grid.x, grid.y[iy])
    gc.garbage

    #exclude zeros and next point if resetting of test fields is used
    #trim reset data and neighbours as required fskip after zeros and mskip before zeros.
    if lskip_zeros:
        if l_mpi:
            if rank == 0:
                izer0 = np.where(av[:, 9, av.shape[2] / 2,
                                    av.shape[3] / 2] == 0)[0]
                for ii in range(1, fskip):
                    izer1 = np.where(av[:, 9, av.shape[2] / 2,
                                        av.shape[3] / 2] == 0)[0] + ii
                    izer0 = np.append(izer0, izer1)
                for ii in range(1, mskip):
                    izer1 = np.where(av[:, 9, av.shape[2] / 2,
                                        av.shape[3] / 2] == 0)[0] - ii
                    izer0 = np.append(izer0, izer1)
                if izer0.size > 0:
                    imask = np.delete(np.where(time), [izer0])
                else:
                    imask = np.where(time)[0]
            else:
                imask = None
            imask = comm.bcast(imask, root=0)
        else:
            izer0 = np.where(av[:, 9, av.shape[2] / 2,
                                av.shape[3] / 2] == 0)[0]
            for ii in range(1, fskip):
                izer1 = np.where(av[:, 9, av.shape[2] / 2,
                                    av.shape[3] / 2] == 0)[0] + ii
                izer0 = np.append(izer0, izer1)
            for ii in range(1, mskip):
                izer1 = np.where(av[:, 9, av.shape[2] / 2,
                                    av.shape[3] / 2] == 0)[0] - ii
                izer0 = np.append(izer0, izer1)
            if izer0.size > 0:
                imask = np.delete(np.where(time), [izer0])
            else:
                imask = np.where(time)[0]
    else:
        imask = np.arange(time.size)
    #if lskip_zeros:
    #    izer0=np.where(av[:,first_alpha,av.shape[2]/2,av.shape[3]/2]==0)[0]
    #    izer1=np.where(av[:,first_alpha,av.shape[2]/2,av.shape[3]/2]==0)[0]+1
    #    if izer0.size>0:
    #        imask=np.delete(np.where(time[:nt]),[izer0,izer1])
    #    else:
    #        imask=np.where(time[:nt])[0]
    #else:
    #    imask=np.arange(time[:nt].size)
    if rank == 0:
        print('rank {}: calculating alp'.format(rank))
    alp = np.zeros([3, 3, imask.size, av.shape[2], av.shape[3]])
    eta = np.zeros([3, 3, 3, imask.size, av.shape[2], av.shape[3]])
    urmst = np.zeros([3, 3, av.shape[2], av.shape[3]])
    etat0 = np.zeros([3, 3, 3, av.shape[2], av.shape[3]])
    #eta0 = np.zeros([3,3,3,imask.size,av.shape[2],av.shape[3]])
    Hp = np.zeros([av.shape[2], av.shape[3]])
    #compute rms velocity normalisation
    if rank == 0:
        print('rank {}: calculating urms'.format(rank))
    urms = np.sqrt(
        np.mean(av[imask, iuxmxy + 3, :, :] - av[imask, iuxmxy + 0, :, :]**2 +
                av[imask, iuxmxy + 4, :, :] - av[imask, iuxmxy + 1, :, :]**2 +
                av[imask, iuxmxy + 5, :, :] - av[imask, iuxmxy + 2, :, :]**2,
                axis=0))
    #compute turbulent diffusion normalisation
    cv, gm, alp_MLT = 0.6, 5. / 3, 5. / 3
    pp = np.mean(av[imask, iTTmxy, :, :] * av[imask, irhomxy, :, :] * cv *
                 (gm - 1),
                 axis=0)
    if rank == 0:
        print('rank {}: completed pressure'.format(rank))
    for i in range(0, av.shape[2]):
        Hp[i, :] = -1. / np.gradient(np.log(pp[i, :]), grid.dx)
    grid, pp = [], []
    for i in range(0, 3):
        for j in range(0, 3):
            alp[i, j, :, :, :] = av[imask, first_alpha + 3 * j + i, :, :]
            urmst[i, j, :, :] = urms / 3.
            for k in range(0, 3):
                etat0[i, j, k, :, :] = urms * alp_MLT * Hp / 3.
    #for i in range(0,imask.size):
    #    eta0[i,:,:,:,:,:] = etat0

    if rank == 0:
        print('rank {}: calculating eta'.format(rank))
    for j in range(0, 3):
        for k in range(0, 3):
            # Sign difference with Schrinner + r correction
            eta[j, k, 1, :, :, :] = -av[imask,
                                        first_alpha + 18 + 3 * k + j, :, :] * r
            eta[j, k,
                0, :, :, :] = -av[imask, first_alpha + 9 + 3 * k + j, :, :]
    nnt, ny, nx = imask.size, av.shape[2], av.shape[3]
    av = []
    irr, ith, iph = 0, 1, 2
    # Create output tensors
    if rank == 0:
        print('rank {}: setting alp'.format(rank))
    alpha = np.zeros([3, 3, nnt, ny, nx])
    beta = np.zeros([3, 3, nnt, ny, nx])
    gamma = np.zeros([3, nnt, ny, nx])
    delta = np.zeros([3, nnt, ny, nx])
    kappa = np.zeros([3, 3, 3, nnt, ny, nx])
    # Alpha tensor
    if rank == 0:
        print('rank {}: calculating alpha'.format(rank))
    alpha[irr, irr, :, :, :] = (alp[irr, irr, :, :, :] -
                                eta[irr, ith, ith, :, :, :] / r)
    alpha[irr, ith, :, :, :] = 0.5 * (
        alp[irr, ith, :, :, :] + eta[irr, irr, ith, :, :, :] / r +
        alp[ith, irr, :, :, :] - eta[ith, ith, ith, :, :, :] / r)
    alpha[irr, iph, :, :, :] = 0.5 * (alp[iph, irr, :, :, :] +
                                      alp[irr, iph, :, :, :] -
                                      eta[iph, ith, ith, :, :, :] / r)
    alpha[ith, irr, :, :, :] = alpha[irr, ith, :, :, :]
    alpha[ith, ith, :, :, :] = (alp[ith, ith, :, :, :] +
                                eta[ith, irr, ith, :, :, :] / r)
    alpha[ith, iph, :, :, :] = 0.5 * (alp[iph, ith, :, :, :] +
                                      alp[ith, iph, :, :, :] +
                                      eta[iph, irr, ith, :, :, :] / r)
    alpha[iph, irr, :, :, :] = alpha[irr, iph, :, :, :]
    alpha[iph, ith, :, :, :] = alpha[ith, iph, :, :, :]
    alpha[iph, iph, :, :, :] = alp[iph, iph, :, :, :]
    # Gamma vector
    gamma[irr, :, :, :] = -0.5 * (alp[ith, iph, :, :, :] -
                                  alp[iph, ith, :, :, :] -
                                  eta[iph, irr, ith, :, :, :] / r)
    gamma[ith, :, :, :] = -0.5 * (alp[iph, irr, :, :, :] -
                                  alp[irr, iph, :, :, :] -
                                  eta[iph, ith, ith, :, :, :] / r)
    gamma[iph, :, :, :] = -0.5 * (
        alp[irr, ith, :, :, :] - alp[ith, irr, :, :, :] +
        eta[irr, irr, ith, :, :, :] / r + eta[ith, ith, ith, :, :, :] / r)
    if rank == 0:
        print('rank {}: calculating beta'.format(rank))
    alp = []
    # Beta tensor
    beta[irr, irr, :, :, :] = -0.5 * eta[irr, iph, ith, :, :, :]
    beta[irr, ith, :, :, :] = 0.25 * (eta[irr, iph, irr, :, :, :] -
                                      eta[ith, iph, ith, :, :, :])
    beta[irr, iph, :, :, :] = 0.25 * (eta[irr, irr, ith, :, :, :] -
                                      eta[iph, iph, ith, :, :, :] -
                                      eta[irr, ith, irr, :, :, :])
    beta[ith, ith, :, :, :] = 0.5 * eta[ith, iph, irr, :, :, :]
    beta[ith, iph, :, :, :] = 0.25 * (eta[ith, irr, ith, :, :, :] +
                                      eta[iph, iph, irr, :, :, :] -
                                      eta[ith, ith, irr, :, :, :])
    beta[iph, iph, :, :, :] = 0.5 * (eta[iph, irr, ith, :, :, :] -
                                     eta[iph, ith, irr, :, :, :])
    beta[ith, irr, :, :, :] = beta[irr, ith, :, :, :]
    beta[iph, irr, :, :, :] = beta[irr, iph, :, :, :]
    beta[iph, ith, :, :, :] = beta[ith, iph, :, :, :]
    # Delta vector
    delta[irr, :, :, :] = 0.25 * (eta[ith, ith, irr, :, :, :] -
                                  eta[ith, irr, ith, :, :, :] +
                                  eta[iph, iph, irr, :, :, :])
    delta[ith, :, :, :] = 0.25 * (eta[irr, irr, ith, :, :, :] -
                                  eta[irr, ith, irr, :, :, :] +
                                  eta[iph, iph, ith, :, :, :])
    delta[iph, :, :, :] = -0.25 * (eta[irr, iph, irr, :, :, :] +
                                   eta[ith, iph, ith, :, :, :])
    # Kappa tensor
    if rank == 0:
        print('rank {}: calculating kappa'.format(rank))
    for i in range(0, 3):
        kappa[i, irr, irr, :, :, :] = -eta[i, irr, irr, :, :, :]
        kappa[i, irr, ith, :, :, :] = -0.5 * (eta[i, ith, irr, :, :, :] +
                                              eta[i, irr, ith, :, :, :])
        kappa[i, irr, iph, :, :, :] = -0.5 * eta[i, iph, irr, :, :, :]
        kappa[i, ith, irr, :, :, :] = kappa[i, irr, ith, :, :, :]
        kappa[i, ith, ith, :, :, :] = -eta[i, ith, ith, :, :, :]
        kappa[i, ith, iph, :, :, :] = -0.5 * eta[i, iph, ith, :, :, :]
        kappa[i, iph, irr, :, :, :] = kappa[i, irr, iph, :, :, :]
        kappa[i, iph, ith, :, :, :] = kappa[i, ith, iph, :, :, :]
        #for it in range(0,nnt):
        #    kappa[i,iph,iph,it,:,:]= 1e-9*etat0[i,0,0,:,:]
    eta = []
    return alpha, beta, gamma, delta, kappa,\
                          time[imask], urmst, etat0
示例#7
0
def read_fixed_points(datadir='data/', fileName='fixed_points.dat', hm=1):
    """
    Reads the fixed points files.

    call signature::

      fixed = read_fixed_points(datadir = 'data/', fileName = 'fixed_points.dat', hm = 1)

    Reads from the fixed points files. Returns the fixed points positions.

    Keyword arguments:

      *datadir*:
        Data directory.

      *fileName*:
        Name of the fixed points file.

      *hm*:
        Header multiplication factor in case Fortran's binary data writes extra large
        header. For most cases hm = 1 is sufficient. For the cluster in St Andrews use hm = 2.
    """

    # read the cpu structure
    dim = pc.read_dim(datadir=datadir)
    if (dim.nprocz > 1):
        print("error: number of cores in z-direction > 1")

    data = []

    # read the data
    fixed_file = open(datadir + fileName, 'rb')
    tmp = fixed_file.read(4 * hm)

    data = pc.fixed_struct()
    eof = 0
    # length of longest array of fixed points
    fixedMax = 0
    if tmp == '':
        eof = 1
    while (eof == 0):
        data.t.append(
            struct.unpack("<" + str(hm + 1) + "f",
                          fixed_file.read(4 * (hm + 1)))[0])
        n_fixed = int(
            struct.unpack("<" + str(2 * hm + 1) + "f",
                          fixed_file.read(4 * (2 * hm + 1)))[1 + int(hm / 2)])

        x = list(np.zeros(n_fixed))
        y = list(np.zeros(n_fixed))
        q = list(np.zeros(n_fixed))
        for j in range(n_fixed):
            x[j] = struct.unpack("<" + str(hm + 1) + "f",
                                 fixed_file.read(4 * (hm + 1)))[-1]
            y[j] = struct.unpack("<f", fixed_file.read(4))[0]
            q[j] = struct.unpack("<" + str(hm + 1) + "f",
                                 fixed_file.read(4 * (hm + 1)))[0]
        data.x.append(x)
        data.y.append(y)
        data.q.append(q)
        data.fidx.append(n_fixed)

        tmp = fixed_file.read(4 * hm)
        if tmp == '':
            eof = 1

        if fixedMax < len(x):
            fixedMax = len(x)

    fixed_file.close()

    # add NaN to fill up the times with smaller number of fixed points
    fixed = pc.fixed_struct()
    for i in range(len(data.t)):
        annex = list(np.zeros(fixedMax - len(data.x[i])) + np.nan)
        fixed.t.append(data.t[i])
        fixed.x.append(data.x[i] + annex)
        fixed.y.append(data.y[i] + annex)
        fixed.q.append(data.q[i] + annex)
        fixed.fidx.append(data.fidx[i])

    fixed.t = np.array(fixed.t)
    fixed.x = np.array(fixed.x)
    fixed.y = np.array(fixed.y)
    fixed.q = np.array(fixed.q)
    fixed.fidx = np.array(fixed.fidx)

    return fixed
示例#8
0
def fixed_points(datadir='data/',
                 fileName='fixed_points_post.dat',
                 varfile='VAR0',
                 ti=-1,
                 tf=-1,
                 traceField='bb',
                 hMin=2e-3,
                 hMax=2e4,
                 lMax=500,
                 tol=1e-2,
                 interpolation='weighted',
                 trace_sub=1,
                 integration='simple',
                 nproc=1):
    """
    Find the fixed points.

    call signature::

      fixed = fixed_points(datadir = 'data/', fileName = 'fixed_points_post.dat', varfile = 'VAR0', ti = -1, tf = -1,
                 traceField = 'bb', hMin = 2e-3, hMax = 2e4, lMax = 500, tol = 1e-2,
                 interpolation = 'weighted', trace_sub = 1, integration = 'simple', nproc = 1)

    Finds the fixed points. Returns the fixed points positions.

    Keyword arguments:

      *datadir*:
        Data directory.

      *fileName*:
        Name of the fixed points file.

     *varfile*:
       Varfile to be read.
       
      *ti*:
        Initial VAR file index for tracer time sequences. Overrides 'varfile'.
        
      *tf*:
        Final VAR file index for tracer time sequences. Overrides 'varfile'.        

     *traceField*:
       Vector field used for the streamline tracing.
        
     *hMin*:
       Minimum step length for and underflow to occur.
       
     *hMax*:
       Parameter for the initial step length.
       
     *lMax*:
       Maximum length of the streamline. Integration will stop if l >= lMax.
       
     *tol*:
       Tolerance for each integration step. Reduces the step length if error >= tol.
     
     *interpolation*:
       Interpolation of the vector field.
       'mean': takes the mean of the adjacent grid point.
       'weighted': weights the adjacent grid points according to their distance.
       
     *trace_sub*:
       Number of sub-grid cells for the seeds for the initial mapping.
       
     *intQ*:
       Quantities to be integrated along the streamlines.
     
      *integration*:
        Integration method.
        'simple': low order method.
        'RK6': Runge-Kutta 6th order.
       
     *nproc*:
       Number of cores for multi core computation.
    """
    class data_struct:
        def __init__(self):
            self.t = []
            self.fidx = []  # number of fixed points at this time
            self.x = []
            self.y = []
            self.q = []

    # Computes rotation along one edge.
    def edge(vv,
             p,
             sx,
             sy,
             diff1,
             diff2,
             phiMin,
             rec,
             hMin=hMin,
             hMax=hMax,
             lMax=lMax,
             tol=tol,
             interpolation=interpolation,
             integration=integration):
        dtot = m.atan2(diff1[0] * diff2[1] - diff2[0] * diff1[1],
                       diff1[0] * diff2[0] + diff1[1] * diff2[1])
        if ((abs(dtot) > phiMin) and (rec < 4)):
            xm = 0.5 * (sx[0] + sx[1])
            ym = 0.5 * (sy[0] + sy[1])
            # trace intermediate field line
            s = pc.stream(vv,
                          p,
                          hMin=hMin,
                          hMax=hMax,
                          lMax=lMax,
                          tol=tol,
                          interpolation=interpolation,
                          integration=integration,
                          xx=np.array([xm, ym, p.Oz]))
            tracer = np.concatenate(
                (s.tracers[0,
                           0:2], s.tracers[s.sl - 1, :], np.reshape(s.l, (1))))
            # discard any streamline which does not converge or hits the boundary
            if ((tracer[5] >= lMax) or (tracer[4] < p.Oz + p.Lz - p.dz)):
                dtot = 0.
            else:
                diffm = np.array(
                    [tracer[2] - tracer[0], tracer[3] - tracer[1]])
                if (sum(diffm**2) != 0):
                    diffm = diffm / np.sqrt(sum(diffm**2))
                dtot = edge(vv, p, [sx[0], xm], [sy[0], ym], diff1, diffm, phiMin, rec+1,
                             hMin = hMin, hMax = hMax, lMax = lMax, tol = tol, interpolation = interpolation, integration = integration)+ \
                       edge(vv, p, [xm, sx[1]], [ym, sy[1]], diffm, diff2, phiMin, rec+1,
                             hMin = hMin, hMax = hMax, lMax = lMax, tol = tol, interpolation = interpolation, integration = integration)
        return dtot

    # Finds the Poincare index of this grid cell.
    def pIndex(vv,
               p,
               sx,
               sy,
               diff,
               phiMin,
               hMin=hMin,
               hMax=hMax,
               lMax=lMax,
               tol=tol,
               interpolation=interpolation,
               integration=integration):
        poincare = 0
        poincare += edge(vv,
                         p, [sx[0], sx[1]], [sy[0], sy[0]],
                         diff[0, :],
                         diff[1, :],
                         phiMin,
                         0,
                         hMin=hMin,
                         hMax=hMax,
                         lMax=lMax,
                         tol=tol,
                         interpolation=interpolation,
                         integration=integration)
        poincare += edge(vv,
                         p, [sx[1], sx[1]], [sy[0], sy[1]],
                         diff[1, :],
                         diff[2, :],
                         phiMin,
                         0,
                         hMin=hMin,
                         hMax=hMax,
                         lMax=lMax,
                         tol=tol,
                         interpolation=interpolation,
                         integration=integration)
        poincare += edge(vv,
                         p, [sx[1], sx[0]], [sy[1], sy[1]],
                         diff[2, :],
                         diff[3, :],
                         phiMin,
                         0,
                         hMin=hMin,
                         hMax=hMax,
                         lMax=lMax,
                         tol=tol,
                         interpolation=interpolation,
                         integration=integration)
        poincare += edge(vv,
                         p, [sx[0], sx[0]], [sy[1], sy[0]],
                         diff[3, :],
                         diff[0, :],
                         phiMin,
                         0,
                         hMin=hMin,
                         hMax=hMax,
                         lMax=lMax,
                         tol=tol,
                         interpolation=interpolation,
                         integration=integration)
        return poincare

    # fixed point finder for a subset of the domain
    def subFixed(queue,
                 ix0,
                 iy0,
                 vv,
                 p,
                 tracers,
                 iproc,
                 hMin=2e-3,
                 hMax=2e4,
                 lMax=500,
                 tol=1e-2,
                 interpolation='weighted',
                 integration='simple'):
        diff = np.zeros((4, 2))
        phiMin = np.pi / 8.
        x = []
        y = []
        q = []
        fidx = 0

        for ix in ix0:
            for iy in iy0:
                # compute Poincare index around this cell (!= 0 for potential fixed point)
                diff[0, :] = tracers[iy, ix, 0, 2:4] - tracers[iy, ix, 0, 0:2]
                diff[1, :] = tracers[iy, ix + 1, 0, 2:4] - tracers[iy, ix + 1,
                                                                   0, 0:2]
                diff[2, :] = tracers[iy + 1, ix + 1, 0,
                                     2:4] - tracers[iy + 1, ix + 1, 0, 0:2]
                diff[3, :] = tracers[iy + 1, ix, 0, 2:4] - tracers[iy + 1, ix,
                                                                   0, 0:2]
                if (sum(np.sum(diff**2, axis=1) != 0) == True):
                    diff = np.swapaxes(
                        np.swapaxes(diff, 0, 1) /
                        np.sqrt(np.sum(diff**2, axis=1)), 0, 1)
                poincare = pIndex(vv,
                                  p,
                                  tracers[iy, ix:ix + 2, 0, 0],
                                  tracers[iy:iy + 2, ix, 0, 1],
                                  diff,
                                  phiMin,
                                  hMin=hMin,
                                  hMax=hMax,
                                  lMax=lMax,
                                  tol=tol,
                                  interpolation=interpolation,
                                  integration=integration)

                if (abs(poincare) > 5
                    ):  # use 5 instead of 2pi to account for rounding errors
                    # subsample to get starting point for iteration
                    nt = 4
                    xmin = tracers[iy, ix, 0, 0]
                    ymin = tracers[iy, ix, 0, 1]
                    xmax = tracers[iy, ix + 1, 0, 0]
                    ymax = tracers[iy + 1, ix, 0, 1]
                    xx = np.zeros((nt**2, 3))
                    tracersSub = np.zeros((nt**2, 5))
                    i1 = 0
                    for j1 in range(nt):
                        for k1 in range(nt):
                            xx[i1, 0] = xmin + j1 / (nt - 1.) * (xmax - xmin)
                            xx[i1, 1] = ymin + k1 / (nt - 1.) * (ymax - ymin)
                            xx[i1, 2] = p.Oz
                            i1 += 1
                    for it1 in range(nt**2):
                        s = pc.stream(vv,
                                      p,
                                      hMin=hMin,
                                      hMax=hMax,
                                      lMax=lMax,
                                      tol=tol,
                                      interpolation=interpolation,
                                      integration=integration,
                                      xx=xx[it1, :])
                        tracersSub[it1, 0:2] = xx[it1, 0:2]
                        tracersSub[it1, 2:] = s.tracers[s.sl - 1, :]
                    min2 = 1e6
                    minx = xmin
                    miny = ymin
                    i1 = 0
                    for j1 in range(nt):
                        for k1 in range(nt):
                            diff2 = (tracersSub[i1, 2] - tracersSub[i1, 0]
                                     )**2 + (tracersSub[i1, 3] -
                                             tracersSub[i1, 1])**2
                            if (diff2 < min2):
                                min2 = diff2
                                minx = xmin + j1 / (nt - 1.) * (xmax - xmin)
                                miny = ymin + k1 / (nt - 1.) * (ymax - ymin)
                            it1 += 1

                    # get fixed point from this starting position using Newton's method
                    #TODO:
                    dl = np.min(
                        var.dx, var.dy
                    ) / 100.  # step-size for calculating the Jacobian by finite differences
                    it = 0
                    # tracers used to find the fixed point
                    tracersNull = np.zeros((5, 4))
                    point = np.array([minx, miny])
                    while True:
                        # trace field lines at original point and for Jacobian:
                        # (second order seems to be enough)
                        xx = np.zeros((5, 3))
                        xx[0, :] = np.array([point[0], point[1], p.Oz])
                        xx[1, :] = np.array([point[0] - dl, point[1], p.Oz])
                        xx[2, :] = np.array([point[0] + dl, point[1], p.Oz])
                        xx[3, :] = np.array([point[0], point[1] - dl, p.Oz])
                        xx[4, :] = np.array([point[0], point[1] + dl, p.Oz])
                        for it1 in range(5):
                            s = pc.stream(vv,
                                          p,
                                          hMin=hMin,
                                          hMax=hMax,
                                          lMax=lMax,
                                          tol=tol,
                                          interpolation=interpolation,
                                          integration=integration,
                                          xx=xx[it1, :])
                            tracersNull[it1, :2] = xx[it1, :2]
                            tracersNull[it1, 2:] = s.tracers[s.sl - 1, 0:2]

                        # check function convergence
                        ff = np.zeros(2)
                        ff[0] = tracersNull[0, 2] - tracersNull[0, 0]
                        ff[1] = tracersNull[0, 3] - tracersNull[0, 1]
                        #TODO:
                        if (sum(abs(ff)) <= 1e-4):
                            fixedPoint = np.array([point[0], point[1]])
                            break

                        # compute the Jacobian
                        fjac = np.zeros((2, 2))
                        fjac[0, 0] = (
                            (tracersNull[2, 2] - tracersNull[2, 0]) -
                            (tracersNull[1, 2] - tracersNull[1, 0])) / 2. / dl
                        fjac[0, 1] = (
                            (tracersNull[4, 2] - tracersNull[4, 0]) -
                            (tracersNull[3, 2] - tracersNull[3, 0])) / 2. / dl
                        fjac[1, 0] = (
                            (tracersNull[2, 3] - tracersNull[2, 1]) -
                            (tracersNull[1, 3] - tracersNull[1, 1])) / 2. / dl
                        fjac[1, 1] = (
                            (tracersNull[4, 3] - tracersNull[4, 1]) -
                            (tracersNull[3, 3] - tracersNull[3, 1])) / 2. / dl

                        # invert the Jacobian
                        fjin = np.zeros((2, 2))
                        det = fjac[0, 0] * fjac[1, 1] - fjac[0, 1] * fjac[1, 0]
                        #TODO:
                        if (abs(det) < dl):
                            fixedPoint = point
                            break
                        fjin[0, 0] = fjac[1, 1]
                        fjin[1, 1] = fjac[0, 0]
                        fjin[0, 1] = -fjac[0, 1]
                        fjin[1, 0] = -fjac[1, 0]
                        fjin = fjin / det
                        dpoint = np.zeros(2)
                        dpoint[0] = -fjin[0, 0] * ff[0] - fjin[0, 1] * ff[1]
                        dpoint[1] = -fjin[1, 0] * ff[0] - fjin[1, 1] * ff[1]
                        point += dpoint

                        # check root convergence
                        #TODO:
                        if (sum(abs(dpoint)) < 1e-4):
                            fixedPoint = point
                            break

                        if (it > 20):
                            fixedPoint = point
                            print("warning: Newton did not converged")
                            break

                        it += 1

                    # check if fixed point lies inside the cell
                    if ((fixedPoint[0] < tracers[iy, ix, 0, 0])
                            or (fixedPoint[0] > tracers[iy, ix + 1, 0, 0])
                            or (fixedPoint[1] < tracers[iy, ix, 0, 1])
                            or (fixedPoint[1] > tracers[iy + 1, ix, 0, 1])):
                        print("warning: fixed point lies outside the cell")
                    else:
                        x.append(fixedPoint[0])
                        y.append(fixedPoint[1])
                        #q.append()
                        fidx += 1

        queue.put((x, y, q, fidx, iproc))

    # multi core setup
    if (np.isscalar(nproc) == False) or (nproc % 1 != 0):
        print("error: invalid processor number")
        return -1
    queue = mp.Queue()
    proc = []

    # make sure to read the var files with the correct magic
    if (traceField == 'bb'):
        magic = 'bb'
    if (traceField == 'jj'):
        magic = 'jj'
    if (traceField == 'vort'):
        magic = 'vort'

    # read the cpu structure
    dim = pc.read_dim(datadir=datadir)
    if (dim.nprocz > 1):
        print("error: number of cores in z-direction > 1")

    var = pc.read_var(varfile=varfile,
                      datadir=datadir,
                      magic=magic,
                      quiet=True,
                      trimall=True)
    grid = pc.read_grid(datadir=datadir, quiet=True, trim=True)
    vv = getattr(var, traceField)

    # initialize the parameters
    p = pc.pClass()
    p.dx = var.dx
    p.dy = var.dy
    p.dz = var.dz
    p.Ox = var.x[0]
    p.Oy = var.y[0]
    p.Oz = var.z[0]
    p.Lx = grid.Lx
    p.Ly = grid.Ly
    p.Lz = grid.Lz
    p.nx = dim.nx
    p.ny = dim.ny
    p.nz = dim.nz

    # create the initial mapping
    tracers, mapping, t = pc.tracers(traceField='bb',
                                     hMin=hMin,
                                     hMax=hMax,
                                     lMax=lMax,
                                     tol=tol,
                                     interpolation=interpolation,
                                     trace_sub=trace_sub,
                                     varfile=varfile,
                                     integration=integration,
                                     datadir=datadir,
                                     destination='',
                                     nproc=nproc)

    # find fixed points
    fixed = pc.fixed_struct()
    xyq = []  # list of  return values from subFixed
    ix0 = range(0, p.nx * trace_sub - 1)  # set of grid indices for the cores
    iy0 = range(0, p.ny * trace_sub - 1)  # set of grid indices for the cores
    subFixedLambda = lambda queue, ix0, iy0, vv, p, tracers, iproc: \
        subFixed(queue, ix0, iy0, vv, p, tracers, iproc, hMin = hMin, hMax = hMax, lMax = lMax, tol = tol,
                 interpolation = interpolation, integration = integration)
    for iproc in range(nproc):
        proc.append(
            mp.Process(target=subFixedLambda,
                       args=(queue, ix0[iproc::nproc], iy0, vv, p, tracers,
                             iproc)))
    for iproc in range(nproc):
        proc[iproc].start()
    for iproc in range(nproc):
        xyq.append(queue.get())
    for iproc in range(nproc):
        proc[iproc].join()

    # put together return values from subFixed
    fixed.fidx = 0
    fixed.t = var.t
    for iproc in range(nproc):
        fixed.x.append(xyq[xyq[iproc][4]][0])
        fixed.y.append(xyq[xyq[iproc][4]][1])
        fixed.q.append(xyq[xyq[iproc][4]][2])
        fixed.fidx += xyq[xyq[iproc][4]][3]

    fixed.t = np.array(fixed.t)
    fixed.x = np.array(fixed.x)
    fixed.y = np.array(fixed.y)
    fixed.q = np.array(fixed.q)
    fixed.fidx = np.array(fixed.fidx)

    return fixed