示例#1
0
def fullTest():
    trainImages, labels, testImages = loadImages()

    per = Perceptron(64, 8, 8)
    per.train(trainImages, labels, 10000)
    results = per.test(testImages)
    print(results)
示例#2
0
def exercise6():
    print("\nExercise 6: Testing\n")

    perceptron = Perceptron(4, 2, 2)
    trainImages = [
        np.array([[1, 0], [0, 0]]),
        np.array([[0, 0], [0, 1]]),
        np.array([[1, 1], [0, 0]]),
        np.array([[0, 1], [0, 1]])
    ]
    labels = [1, -1, 1, -1]
    perceptron.train(trainImages, labels, 10)

    testImages = [
        np.array([[1, 0], [0, 0]]),
        np.array([[0, 0], [0, 1]]),
        np.array([[1, 1], [0, 0]]),
        np.array([[0, 1], [0, 1]])
    ]
    expectedResults = [1, -1, 1, -1]
    print(testTesting(perceptron, testImages, expectedResults))

    testImages = [
        np.array([[0, 0], [1, 0]]),
        np.array([[0, 0], [1, 1]]),
        np.array([[1, 1], [1, 0]]),
        np.array([[0, 1], [1, 1]])
    ]
    expectedResults = [0, -1, 1, -1]
    print(testTesting(perceptron, testImages, expectedResults))
示例#3
0
def fullTest():
    trainImages, labels, testImages = loadImages()

    per = Perceptron(64, 8, 8)
    per.train(trainImages, labels, 10000)
    results = per.test(testImages)
    for image, result in zip(testImages, results):
        cv2.imshow("test", image * 255)
        print(result)
        cv2.waitKey(0)

    print(results)