# Model filename = 'data1.csv' ot.RandomGenerator.SetSeed(0) sample = ot.Normal(3).getSample(300) sample.stack(ot.Gumbel().getSample(300)) sample.setDescription(['X0', 'X1', 'X2', 'X3']) sample.exportToCSVFile(filename, ',') columns = [0, 2, 3] model = persalys.DataModel('myDataModel', "data1.csv", columns) myStudy.add(model) print(model) # Inference analysis ## analysis = persalys.InferenceAnalysis('analysis', model) variables = ["X0", "X3"] analysis.setInterestVariables(variables) factories = [ot.NormalFactory(), ot.GumbelFactory()] analysis.setDistributionsFactories("X3", factories) analysis.setLevel(0.1) myStudy.add(analysis) print(analysis) analysis.run() result = analysis.getResult() print("result=", result) print(result.getFittingTestResultForVariable('X3')) # script
sobol.setReplicationSize(3) sobol.setBlockSize(1) sobol.setSeed(2) sobol.setInterestVariables(['y0', 'y1']) myStudy.add(sobol) # 4-b SRC ## src = persalys.SRCAnalysis('SRC', model1) src.setSimulationsNumber(20) src.setSeed(2) src.setInterestVariables(['y0', 'y1']) myStudy.add(src) # 7- data analysis ## dataAnalysis = persalys.DataAnalysis('DataAnalysis', model3) myStudy.add(dataAnalysis) # 8- Marginals inference ## inference = persalys.InferenceAnalysis('inference', model3) inference.setInterestVariables(['x_0', 'x_3']) factories = [ot.NormalFactory(), ot.GumbelFactory()] inference.setDistributionsFactories('x_3', factories) inference.setLevel(0.1) myStudy.add(inference) # 9- Copula inference ## copulaInference = persalys.CopulaInferenceAnalysis('copulaInference', model3) factories = [ot.NormalCopulaFactory(), ot.GumbelCopulaFactory()] copulaInference.setDistributionsFactories(['x_0', 'x_3'], factories) myStudy.add(copulaInference)