示例#1
0
def calculatePI(val = None):
    global dgms, first
    if not first:
        r = int(sld_resolution.val)
        v = sld_spread.val
    else:
        r = 10
        v = 1
    pim = PersImage(spread=v, pixels=[r,r], verbose=False)
    img = pim.transform(dgms[1])
    ax_1 = plt.subplot(233)
    plt.title("PI for $H_1$\nspread = " + str(v)[0:4] + "\n" + str(r) + "x" + str(r))
    pim.show(img, ax_1)
    first = False
示例#2
0
import matplotlib.pyplot as plt

pim_df = pd.read_csv("./pim_vectors_mp20_sbst.csv")
pim_df.gest = pim_df.gest.astype("category")

pims = pim_df.values[:, :
                     -2]  # predictor vectors: persistence images (864xpx**2)
gests = pim_df.values[:, -2].astype("int64")  # data labels: gesture numbers

pimsd = 1e-5
px = 20
pim = PersImage(pixels=[px, px], spread=pimsd)

# code to load model
with open("./saved_models/log_reg_skl.sav", "rb") as fh:
    log_reg = pickle.load(fh)

######## train/ test split ########
np.random.seed(1)
pims_train, pims_test, gests_train, gests_test = train_test_split(
    pims, gests, test_size=0.2, random_state=1)

oos_acc = log_reg.score(pims_test, gests_test)
print(f"Accuracy: {oos_acc * 100}%")

inverse_image = np.copy(log_reg.coef_).reshape(-1, px)
for i in range(4):
    pim.show(inverse_image[i * px:(i + 1) * px, :])
    plt.title("Inverse Persistence Image for Gesture: " + str(i + 1))
    plt.savefig("./figures/pres_figs/logreg_inv_img_g" + str(i + 1) + ".png")
示例#3
0
def inverse(allFeatures,
            classes,
            nonanIndFeature=None,
            cv=False,
            printijScores=False):
    # use only uniqueClassName with larger than 10 samples
    MINCOUNT = 10
    cvFolds = 10
    MINCOUNTTRAINING = 5

    if nonanIndFeature is not None:
        classes = classes[nonanIndFeature]
        allFeatures = allFeatures[nonanIndFeature]

    uniqueClassName, uniqueCNameCount = np.unique(
        classes, return_counts=True
    )  # uniqueClassName to be discriminated should be same as lr.classes_
    goodClassNameInd = np.array([n >= MINCOUNT for n in uniqueCNameCount])
    goodSampleInd = np.array(
        [b in uniqueClassName[goodClassNameInd] for b in classes])
    goodClassNameInd[np.where(uniqueClassName == 'Unknown00F')[0]] = False

    #take good indices and enode the classes labels as numbers
    goodClasses = classes[goodSampleInd]
    goodFeatures = allFeatures[goodSampleInd]

    le = preprocessing.LabelEncoder()
    le.fit(goodClasses)
    goodClassLabels = le.transform(goodClasses)
    nGoodClass = uniqueClassName[goodClassNameInd].size
    nPair = int(nGoodClass * (nGoodClass - 1) / 2)
    scores = np.zeros(nPair)
    pValues = np.zeros(nPair)

    ncounter = 0
    nhighScores = 0
    nSigP = 0

    lr = LogisticRegression(C=1,
                            class_weight=None,
                            dual=False,
                            fit_intercept=True,
                            intercept_scaling=1,
                            max_iter=100,
                            multi_class='ovr',
                            n_jobs=1,
                            penalty='l2',
                            random_state=0,
                            solver='liblinear',
                            tol=0.0001,
                            verbose=0,
                            warm_start=False)
    #lt = [108, 110, 164,163,134,244,100,97,123,13,101,23,208,37]

    for i in range(0):  #range(nGoodClass):
        for j in range(1, 2):  #range(nGoodClass):
            if i < j:
                #if (i ==0) & (j ==14):
                featureij = np.vstack(
                    (goodFeatures[np.where(goodClassLabels == i)[0]],
                     goodFeatures[np.where(goodClassLabels == j)[0]]))
                classij = np.hstack(
                    (goodClassLabels[np.where(goodClassLabels == i)[0]],
                     goodClassLabels[np.where(goodClassLabels == j)[0]]))
                if cv == True:
                    cvCount = 0
                    lrYes = 0
                    skf = StratifiedKFold(n_splits=cvFolds)
                    skfList = skf.split(featureij, classij)
                    for train, test in skfList:
                        # Enforce the MINCOUNT in each class for Training
                        trainClasses, trainCount = np.unique(
                            classij[train], return_counts=True)
                        goodIndClasses = np.array(
                            [n >= MINCOUNTTRAINING for n in trainCount])
                        goodIndTrain = np.array([
                            b in trainClasses[goodIndClasses]
                            for b in classij[train]
                        ])
                        # Specity the training data set, the number of groups and priors
                        yTrain = classij[train[goodIndTrain]]
                        XrTrain = featureij[train[goodIndTrain]]
                        trainClasses, trainCount = np.unique(
                            yTrain, return_counts=True)
                        ntrainClasses = trainClasses.size
                        # Skip this cross-validation fold because of insufficient data
                        if ntrainClasses < 2:
                            continue
                        goodTrainInd = np.array(
                            [b in trainClasses for b in classij[test]])
                        if (goodTrainInd.size == 0):
                            continue
                        lr.fit(XrTrain, yTrain)
                        print(lr.coef_)

                        inverse_image = np.copy(lr.coef_).reshape((15, 15))
                        #np.save('inverseimage_0_14_p20_s0.01.npy', inverse_image)
                        pim = PersImage(pixels=[15, 15], spread=1)
                        pim.show(inverse_image)
                        plt.show()
                        lrYes += np.around(
                            (lr.score(featureij[test[goodTrainInd]],
                                      classij[test[goodTrainInd]])) *
                            goodTrainInd.size)
                        cvCount += goodTrainInd.size
                    lrYesInt = int(lrYes)
                    p = 1.0 / 2
                    lrP = 0
                    for k in range(lrYesInt, cvCount + 1):
                        lrP += binom.pmf(k, cvCount, p)

                    print("LR: %.2f %% (%d/%d p=%.4f)" %
                          (100.0 * lrYes / cvCount, lrYes, cvCount, lrP))
                    #if ncounter in lt:
                    #	print(ncounter, i, j)
                    scores[ncounter] = 100.0 * lrYes / cvCount
                    pValues[ncounter] = lrP
                    if scores[ncounter] >= 90.0 and pValues[ncounter] <= 0.05:
                        nhighScores += 1
                    if pValues[ncounter] <= 0.05:
                        nSigP += 1

                else:
                    X_train, X_test, y_train, y_test = train_test_split(
                        featureij, classij, test_size=0.10, random_state=42)
                    lr.fit(X_train, y_train)
                    scores[ncounter] = lr.score(X_test, y_test)
                    if printijScores:
                        print('classes:', i, j, 'scores', scores[ncounter])

                    if scores[ncounter] >= .95:
                        nhighScores += 1

                ncounter += 1
    print('mean scores: ', np.mean(scores),
          'nhighScores/ntotal: %s/%s' % (nhighScores, ncounter),
          'nSigP/ntotal: %s/%s' % (nSigP, nPair))
    return scores, pValues, nhighScores, nPair
示例#4
0
def plot_coeff(fig, coeff, location, title):
    pim = PersImage(pixels=[10, 10], spread=1)
    ax = fig.add_subplot(location)
    inverse_image = np.copy(coeff).reshape((10, 10))
    ax.set_title(title)
    pim.show(inverse_image, ax)
示例#5
0

import numpy as np
import matplotlib.pyplot as plt
import scipy
from persim import plot_diagrams, PersImage
from ripser import ripser, Rips
from train_feats import get_data

sample_size = 5000
num_points = 300
homology_dim = 2

data = get_data(num=sample_size)
dgm = Rips(maxdim=homology_dim,n_perm=num_points).fit_transform(data)

img_generator = PersImage()

im = img_generator.transform(dgm)

fig, ax = plt.subplots()

img_generator.show(im,ax=ax)

fig.savefig("pim.png")