def create_latency_vs_percent_found(max_latency, number_samples, max_timestep): iterations = [] for i in trange(max_latency): num_yes = 0 for j in range(number_samples): m = BasicMap(15, 15) middle = (7, 7) # Add some lost persons to the map lp00 = RandomWalkLostPerson(m) lp00.init(middle) # Add some searchers to the map searcher00 = RandomWalkSearcher(m) searcher00.init(middle) s = Scenario(m, [lp00], [searcher00], i) count = s.simulate(max_timestep) # Simulate for N time steps if s.num_rescued > 0: num_yes += 1 perc_found = num_yes / number_samples iterations.append(perc_found * 100) plt.plot(iterations) plt.xlabel('Latency') plt.ylabel('% lost persons found') plt.savefig('latency_vs_percent_found.pdf', bbox_inches='tight') plt.close()
def create_searchers_vs_time(max_searchers, latency, number_samples, num_time_steps): iterations = [] for num_searchers in trange(1, max_searchers + 1): total = 0 for i in range(number_samples): m = BasicMap(15, 15) middle = (7, 7) # Add some lost persons to the map lp00 = RandomWalkLostPerson(m) lp00.init(middle) searchers = [] for j in range(num_searchers): # Add some searchers to the map searcher = RandomWalkSearcher(m) searcher.init(middle) searchers.append(searcher) s = Scenario(m, [lp00], searchers) count = s.simulate(num_time_steps) # Simulate for N time steps total += count avg = total / number_samples iterations.append(avg) plt.plot(list(range(1, max_searchers + 1)), iterations) plt.xlabel('Number of searchers') plt.ylabel('Average number of search time steps') plt.savefig('searchers_vs_time.pdf', bbox_inches='tight') plt.close()
def get_quadrantPartitionPerformance(num_searchers=15, max_timestep=100, latency=15, number_samples=1000): iterations = [] for i in range(0, num_searchers + 1): total = 0 for j in range(number_samples): m = BasicMap(15, 15) partitioner = QuadrantPartitioner() [rows_midpoint, cols_midpoint] = partitioner.partition(m) quad01_rows = (0, rows_midpoint) quad01_cols = (0, cols_midpoint) quad02_rows = (0, rows_midpoint) quad02_cols = (cols_midpoint, m.numColumns() - 1) quad03_rows = (rows_midpoint, m.numRows() - 1) quad03_cols = (0, cols_midpoint - 1) quad04_rows = (rows_midpoint, m.numRows() - 1) quad04_cols = (cols_midpoint, m.numColumns() - 1) middle = (7, 7) # Add some lost persons to the map lp00 = RandomWalkLostPerson(m) lp00.init(middle) # Add some searchers to the map searchers = [] for j in range(0, i): if j % 4 == 0: # Assign to quadrant 1 searcher = RandomWalkSearcher(m, quad01_rows, quad01_cols) elif j % 4 == 1: # Assign to quadrant 2 searcher = RandomWalkSearcher(m, quad02_rows, quad02_cols) elif j % 4 == 2: # Assign to quadrant 3 searcher = RandomWalkSearcher(m, quad03_rows, quad03_cols) else: # Assign to quadrant 4 searcher = RandomWalkSearcher(m, quad04_rows, quad04_cols) searcher.init(middle) searchers.append(searcher) s = Scenario(m, [lp00], searchers, latency) count = s.simulate(max_timestep) # Simulate for N time steps total += count avg = total / number_samples iterations.append(avg) plt.title("searchers vs time step") plt.plot(list(range(len(iterations))), iterations) plt.xlabel('searchers') plt.ylabel('time step') plt.show() print(iterations) return iterations
def create_latency_vs_timestep(max_latency, number_samples, max_timestep): iterations = [] for i in trange(max_latency): total = 0 for j in range(number_samples): m = BasicMap(15, 15) middle = (7, 7) # Add some lost persons to the map lp00 = RandomWalkLostPerson(m) lp00.init(middle) # Add some searchers to the map searcher00 = RandomWalkSearcher(m) searcher00.init(middle) s = Scenario(m, [lp00], [searcher00], i) count = s.simulate(max_timestep) # Simulate for N time steps total += count avg = total / number_samples iterations.append(avg) plt.plot(iterations) plt.xlabel('Latency') plt.ylabel('Average number of search time steps') plt.savefig('latency_vs_time_steps.pdf', bbox_inches='tight') plt.close()
def test_scenario_one_multiple_searcher(self): m = BasicMap(15, 15) middle = (7,7) # Add some lost persons to the map lp00 = RandomWalkLostPerson(m) lp00.init(middle) searchers = [] for i in range(10): # Add some searchers to the map searcher = RandomWalkSearcher(m) searcher.init(middle) searchers.append(searcher) s = Scenario(m, [lp00], searchers) s.simulate(100) # Simulate for N time steps print("lost person history: \n") print(lp00.get_history()) print("\n") for i in range(10): print("searcher history: " , i) print(searchers[i].get_history()) print("\n")
def get_lanePartitionPerformance(num_searchers=15, max_timestep=100, max_latency=15, number_samples=100): # TODO - Finish this. iterations = [] num_rows = 15 num_cols = 15 for i in range(1, num_searchers + 1): # Get our lanes!!! lanes = [] lane_size = (num_cols - 1) / i for j in range(0, i): lower = j * lane_size upper = (j + 1) * lane_size lanes.append((math.floor(lower) + 1, math.floor(upper))) lanes[0] = (0, lanes[0][1]) print(lanes) total = 0 for j in range(number_samples): m = BasicMap(15, 15) middle = (7, 7) # Add some lost persons to the map lp00 = RandomWalkLostPerson(m) lp00.init(middle) # Add some searchers to the map searchers = [] for k in range(0, len(lanes)): searcher = VerticalSweepSearcher(m, lanes[k]) searcher.init((0, math.floor((lanes[k][0] + lanes[k][1]) / 2))) searchers.append(searcher) s = Scenario(m, [lp00], searchers, max_latency) count = s.simulate(max_timestep) # Simulate for N time steps total += count avg = total / number_samples iterations.append(avg) plt.title("latency vs time step") plt.plot(list(range(len(iterations))), iterations) plt.xlabel('latency') plt.ylabel('time step') plt.show() print(iterations) return iterations
def getNoPartitionStats(num_searchers, number_samples, max_timestep, latency): num_yes = 0 avg_found = [] perc_found = 0 num_timesteps_successful = [] num_timesteps_overall = [] for i in range(number_samples): m = BasicMap(101, 101) middle = (50, 50) # Add some lost persons to the map lp00 = RandomWalkLostPerson(m) lp00.init(middle) # Add some searchers to the map searchers = [] for j in range(0, num_searchers): searcher = RandomWalkSearcher(m) searcher.init(middle) searchers.append(searcher) s = Scenario(m, [lp00], searchers, latency=latency) count = s.simulate(max_timestep) # Simulate for N time steps if count < max_timestep: num_yes += 1 num_timesteps_successful.append(count) num_timesteps_overall.append(count) perc_found = num_yes / (i + 1) perc_found = perc_found * 100 avg_found.append(perc_found) # Graph convergence plt.title( "Convergence to expected probability of success, no partitioning") plt.plot(list(range(number_samples)), avg_found) plt.xlabel('Number of Samples') plt.ylabel('Probability of Success') plt.savefig('convergence_psucess.png') print("Result: Percent Lost Person Discovered = " + str(perc_found)) print("Average Number of Time Steps (when successful): " + str(sum(num_timesteps_successful) / len(num_timesteps_successful))) print("Standard deviation: " + str(statistics.stdev(num_timesteps_successful))) print("Average Number of Time Steps (overall): " + str(sum(num_timesteps_overall) / len(num_timesteps_overall))) print("Standard deviation: " + str(statistics.stdev(num_timesteps_overall)))
def test_scenario_randomWalker(self): m = BasicMap(10, 10) # Add some lost persons to the map lp00 = RandomWalkLostPerson(m) lp00.init((2, 5)) # Add some searchers to the map searcher00 = StationarySearcher(m) searcher00.init((4, 8)) s = Scenario(m, [lp00], [searcher00]) s.simulate(10) # Simulate for N time steps print(lp00.get_history()) print(searcher00.get_history())
def test_quadrant_partitioner(self): m = BasicMap(25, 25) middle = (12, 12) # Add some lost persons to the map lp00 = RandomWalkLostPerson(m) lp00.init(middle) # Partition map into quadrants searchers = [] partitioner = QuadrantPartitioner() [rows_midpoint, cols_midpoint] = partitioner.partition(m) quad01_rows = (0, rows_midpoint) quad01_cols = (0, cols_midpoint) s00 = RandomWalkSearcher(m, quad01_rows, quad01_cols) s00.init(middle) searchers.append(s00) quad02_rows = (0, rows_midpoint) quad02_cols = (cols_midpoint, m.numColumns()-1) s01 = RandomWalkSearcher(m, quad02_rows, quad02_cols) s01.init(middle) searchers.append(s01) quad03_rows = (rows_midpoint, m.numRows()-1) quad03_cols = (0, cols_midpoint-1) s02 = RandomWalkSearcher(m, quad03_rows, quad03_cols) s02.init(middle) searchers.append(s02) quad04_rows = (rows_midpoint, m.numRows()-1) quad04_cols = (cols_midpoint, m.numColumns()-1) s03 = RandomWalkSearcher(m, quad04_rows, quad04_cols) s03.init(middle) searchers.append(s03) scenario = Scenario(m, [lp00], searchers, latency=50) scenario.simulate(100) print("lost person history: \n") print(lp00.get_history()) print("\n") for i in range(4): print("searcher history: " , i) print(searchers[i].get_history()) print("\n")
def test_scenario_one_random_searcher(self): m = BasicMap(15, 15) middle = (7,7) # Add some lost persons to the map lp00 = RandomWalkLostPerson(m) lp00.init(middle) # Add some searchers to the map searcher00 = RandomWalkSearcher(m) searcher00.init(middle) s = Scenario(m, [lp00], [searcher00]) s.simulate(100) # Simulate for N time steps print("lost person history: \n") print(lp00.get_history()) print("\n") print("searcher history: ") print(searcher00.get_history())
def test_vertical_sweep_searcher(self): m = BasicMap(101, 101) # m.print() interval: [0, 29] middle = (50, 50) # Add some lost persons to the map lp00 = RandomWalkLostPerson(m) lp00.init(middle) num_searchers = 10 lane_size = int(30 / num_searchers) lanes = [] lower = 0 upper = lane_size - 1 lanes.append((lower, upper)) while upper < 29: lower = upper + 1 upper = upper + lane_size lanes.append((lower, upper)) searchers = [] for i in range(0, len(lanes)): searcher = VerticalSweepSearcher(m, lanes[i]) searcher.init((0, math.floor((lanes[i][0] + lanes[i][1])/2))) searchers.append(searcher) self.assertTrue(len(searchers) == num_searchers) scenario = Scenario(m, [lp00], searchers) scenario.simulate(100) print("lost person history: \n") print(lp00.get_history()) print("\n") for i in range(num_searchers): print("searcher history: " , i) print(searchers[i].get_history()) print(len(searchers[i].get_history())) print("\n")
def getQuadrantPartitionStats(num_searchers, number_samples, max_timestep, latency): num_yes = 0 avg_found = [] perc_found = 0 num_timesteps_successful = [] num_timesteps_overall = [] for i in range(number_samples): m = BasicMap(101, 101) middle = (50, 50) partitioner = QuadrantPartitioner() [rows_midpoint, cols_midpoint] = partitioner.partition(m) quad01_rows = (0, rows_midpoint) quad01_cols = (0, cols_midpoint) quad02_rows = (0, rows_midpoint) quad02_cols = (cols_midpoint, m.numColumns() - 1) quad03_rows = (rows_midpoint, m.numRows() - 1) quad03_cols = (0, cols_midpoint - 1) quad04_rows = (rows_midpoint, m.numRows() - 1) quad04_cols = (cols_midpoint, m.numColumns() - 1) # Add some lost persons to the map lp00 = RandomWalkLostPerson(m) lp00.init(middle) # Add some searchers to the map searchers = [] for j in range(0, num_searchers): if j % 4 == 0: # Assign to quadrant 1 searcher = RandomWalkSearcher(m, quad01_rows, quad01_cols) elif j % 4 == 1: # Assign to quadrant 2 searcher = RandomWalkSearcher(m, quad02_rows, quad02_cols) elif j % 4 == 2: # Assign to quadrant 3 searcher = RandomWalkSearcher(m, quad03_rows, quad03_cols) else: # Assign to quadrant 4 searcher = RandomWalkSearcher(m, quad04_rows, quad04_cols) searcher.init(middle) searchers.append(searcher) s = Scenario(m, [lp00], searchers, latency=latency) count = s.simulate(max_timestep) # Simulate for N time steps if count < max_timestep: num_yes += 1 num_timesteps_successful.append(count) num_timesteps_overall.append(count) perc_found = num_yes / (i + 1) perc_found = perc_found * 100 avg_found.append(perc_found) # Graph convergence plt.title( "Convergence to expected probability of success, quadrant partitioning" ) plt.plot(list(range(number_samples)), avg_found) plt.xlabel('Number of Samples') plt.ylabel('Probability of Success') plt.savefig('convergence_psucess_quadrant.png') print("Result: Percent Lost Person Discovered = " + str(perc_found)) print("Average Number of Time Steps (when successful): " + str(sum(num_timesteps_successful) / len(num_timesteps_successful))) print("Standard deviation: " + str(statistics.stdev(num_timesteps_successful))) print("Average Number of Time Steps (overall): " + str(sum(num_timesteps_overall) / len(num_timesteps_overall))) print("Standard deviation: " + str(statistics.stdev(num_timesteps_overall)))
def getLanePartitionStats(num_searchers, number_samples, max_timestep, latency, lane_size): num_yes = 0 avg_found = [] perc_found = 0 num_timesteps_successful = [] num_timesteps_overall = [] # Final lane is just a bit wider than the others... # lanes = [(0, 9), (10, 19), (20, 29), (30, 39), (40, 49), # (50, 59), (60, 69), (70, 79), (80, 89), (90, 100)] lanes = [] lower = 0 upper = lane_size - 1 lanes.append((lower, upper)) for i in range(0, num_searchers - 1): # Each searcher gets a dedicated lane lower = upper + 1 upper += lane_size lanes.append((lower, upper)) print(lanes) for i in range(number_samples): m = BasicMap(101, 101) middle = (50, 50) # Add some lost persons to the map lp00 = RandomWalkLostPerson(m) lp00.init(middle) # Add some searchers to the map searchers = [] for j in range(0, len(lanes)): searcher = VerticalSweepSearcher(m, lanes[j]) searcher.init((0, math.floor((lanes[j][0] + lanes[j][1]) / 2))) searchers.append(searcher) s = Scenario(m, [lp00], searchers, latency=latency) count = s.simulate(max_timestep) # Simulate for N time steps if count < max_timestep: num_yes += 1 num_timesteps_successful.append(count) num_timesteps_overall.append(count) perc_found = num_yes / (i + 1) perc_found = perc_found * 100 avg_found.append(perc_found) # Graph convergence plt.title( "Convergence to expected probability of success, lanes partitioning") plt.plot(list(range(number_samples)), avg_found) plt.xlabel('Number of Samples') plt.ylabel('Probability of Success') plt.savefig('convergence_psucess_lanes.png') print("Result: Percent Lost Person Discovered = " + str(perc_found)) print("Average Number of Time Steps (when successful): " + str(sum(num_timesteps_successful) / len(num_timesteps_successful))) print("Standard deviation: " + str(statistics.stdev(num_timesteps_successful))) print("Average Number of Time Steps (overall): " + str(sum(num_timesteps_overall) / len(num_timesteps_overall))) print("Standard deviation: " + str(statistics.stdev(num_timesteps_overall)))