示例#1
0
def l1qc(cf):
    # get the data series from the Excel file
    in_filename = pfp_io.get_infilenamefromcf(cf)
    if not pfp_utils.file_exists(in_filename, mode="quiet"):
        msg = " Input file " + in_filename + " not found ..."
        logger.error(msg)
        ds1 = pfp_io.DataStructure()
        ds1.returncodes = {"value": 1, "message": msg}
        return ds1
    file_name, file_extension = os.path.splitext(in_filename)
    if "csv" in file_extension.lower():
        ds1 = pfp_io.csv_read_series(cf)
        if ds1.returncodes["value"] != 0:
            return ds1
        # get a series of Excel datetime from the Python datetime objects
        #pfp_utils.get_xldatefromdatetime(ds1)
    else:
        ds1 = pfp_io.xl_read_series(cf)
        if ds1.returncodes["value"] != 0:
            return ds1
        # get a series of Python datetime objects from the Excel datetime
        #pfp_utils.get_datetime_from_xldate(ds1)
    # get the netCDF attributes from the control file
    #pfp_ts.do_attributes(cf,ds1)
    pfp_utils.get_datetime(cf, ds1)
    # round the Python datetime to the nearest second
    pfp_utils.round_datetime(ds1, mode="nearest_second")
    #check for gaps in the Python datetime series and fix if present
    fixtimestepmethod = pfp_utils.get_keyvaluefromcf(cf, ["options"],
                                                     "FixTimeStepMethod",
                                                     default="round")
    if pfp_utils.CheckTimeStep(ds1):
        pfp_utils.FixTimeStep(ds1, fixtimestepmethod=fixtimestepmethod)
    # recalculate the Excel datetime
    #pfp_utils.get_xldatefromdatetime(ds1)
    # get the Year, Month, Day etc from the Python datetime
    #pfp_utils.get_ymdhmsfromdatetime(ds1)
    # write the processing level to a global attribute
    ds1.globalattributes['nc_level'] = str("L1")
    # get the start and end date from the datetime series unless they were
    # given in the control file
    if 'start_date' not in ds1.globalattributes.keys():
        ds1.globalattributes['start_date'] = str(
            ds1.series['DateTime']['Data'][0])
    if 'end_date' not in ds1.globalattributes.keys():
        ds1.globalattributes['end_date'] = str(
            ds1.series['DateTime']['Data'][-1])
    # calculate variances from standard deviations and vice versa
    pfp_ts.CalculateStandardDeviations(cf, ds1)
    # create new variables using user defined functions
    pfp_ts.DoFunctions(cf, ds1)
    # create a series of synthetic downwelling shortwave radiation
    #pfp_ts.get_synthetic_fsd(ds1)
    # check missing data and QC flags are consistent
    pfp_utils.CheckQCFlags(ds1)

    return ds1
示例#2
0
def do_run_l5(main_gui, cfg):
    """
    Purpose:
     Top level routine for running the L5 gap filling.
    Usage:
     pfp_top_level.do_run_l5()
    Side effects:
     Creates an L5 netCDF file with gap filled meteorology.
    Author: PRI
    Date: Back in the day
    Mods:
     December 2017: rewrite for use with new GUI
    """
    try:
        logger.info("Starting L5 processing")
        in_filepath = pfp_io.get_infilenamefromcf(cfg)
        if not pfp_utils.file_exists(in_filepath):
            in_filename = os.path.split(in_filepath)
            logger.error("File " + in_filename[1] + " not found")
            return
        ds4 = pfp_io.nc_read_series(in_filepath)
        if ds4.returncodes["value"] != 0: return
        #ds4.globalattributes['controlfile_name'] = cfg['controlfile_name']
        sitename = ds4.globalattributes['site_name']
        if "Options" not in cfg:
            cfg["Options"] = {}
        cfg["Options"]["call_mode"] = "interactive"
        ds5 = pfp_levels.l5qc(main_gui, cfg, ds4)
        # check to see if all went well
        if ds5.returncodes["value"] != 0:
            # tell the user something went wrong
            logger.info("Quitting L5: " + sitename)
            # delete the output file if it exists
            out_filepath = pfp_io.get_outfilenamefromcf(cfg)
            if os.path.isfile(out_filepath):
                os.remove(out_filepath)
        else:
            # tell the user we are finished
            logger.info("Finished L5: " + sitename)
            # get the output file name from the control file
            out_filepath = pfp_io.get_outfilenamefromcf(cfg)
            # open it for writing
            nc_file = pfp_io.nc_open_write(out_filepath)
            if nc_file is None: return
            # write the output file
            pfp_io.nc_write_series(nc_file, ds5)
            logger.info("Finished saving L5 gap filled data")
        logger.info("")
    except Exception:
        msg = " Error running L5, see below for details ..."
        logger.error(msg)
        error_message = traceback.format_exc()
        logger.error(error_message)
    return
示例#3
0
def do_run_l3(cfg=None):
    """
    Purpose:
     Top level routine for running the L23 post-processing.
    Usage:
     pfp_top_level.do_l3()
    Side effects:
     Creates an L3 netCDF file.
    Author: PRI
    Date: Back in the day
    Mods:
     December 2017: rewrite for use with new GUI
    """
    try:
        logger.info("Starting L3 processing")
        if not cfg:
            cfg = pfp_io.load_controlfile()
            if len(cfg) == 0:
                logger.info("Quiting L3 processing (no control file)")
                return
        in_filepath = pfp_io.get_infilenamefromcf(cfg)
        if not pfp_utils.file_exists(in_filepath):
            in_filename = os.path.split(in_filepath)
            logger.error("File " + in_filename[1] + " not found")
            return
        ds2 = pfp_io.nc_read_series(in_filepath)
        ds3 = pfp_levels.l3qc(cfg, ds2)
        if ds3.returncodes["value"] != 0:
            logger.error("An error occurred during L3 processing")
            logger.error("")
            return
        out_filepath = pfp_io.get_outfilenamefromcf(cfg)
        nc_file = pfp_io.nc_open_write(out_filepath)
        pfp_io.nc_write_series(nc_file, ds3)
        logger.info("Finished L3 processing")
        if "Plots" in list(cfg.keys()):
            logger.info("Plotting L3 data")
            for nFig in cfg['Plots'].keys():
                plt_cf = cfg['Plots'][str(nFig)]
                if 'Type' in plt_cf.keys():
                    if str(plt_cf['Type']).lower() == 'xy':
                        pfp_plot.plotxy(cfg, nFig, plt_cf, ds2, ds3)
                    else:
                        pfp_plot.plottimeseries(cfg, nFig, ds2, ds3)
                else:
                    pfp_plot.plottimeseries(cfg, nFig, ds2, ds3)
            logger.info("Finished plotting L3 data")
    except Exception:
        msg = " Error running L3, see below for details ..."
        logger.error(msg)
        error_message = traceback.format_exc()
        logger.error(error_message)
    logger.info("")
    return
示例#4
0
def do_run_l6(main_gui, cfg=None):
    """
    Purpose:
     Top level routine for running the L6 gap filling.
    Usage:
     pfp_top_level.do_run_l6()
    Side effects:
     Creates an L6 netCDF file with NEE partitioned into GPP and ER.
    Author: PRI
    Date: Back in the day
    Mods:
     December 2017: rewrite for use with new GUI
    """
    try:
        logger.info("Starting L6 processing")
        if not cfg:
            cfg = pfp_io.load_controlfile(path='controlfiles')
            if len(cfg) == 0:
                logger.info("Quiting L6 processing (no control file)")
                return
        in_filepath = pfp_io.get_infilenamefromcf(cfg)
        if not pfp_utils.file_exists(in_filepath):
            in_filename = os.path.split(in_filepath)
            logger.error("File " + in_filename[1] + " not found")
            return
        ds5 = pfp_io.nc_read_series(in_filepath)
        #ds5.globalattributes['controlfile_name'] = cfg['controlfile_name']
        sitename = ds5.globalattributes['site_name']
        if "Options" not in cfg:
            cfg["Options"] = {}
        cfg["Options"]["call_mode"] = "interactive"
        cfg["Options"]["show_plots"] = "Yes"
        ds6 = pfp_levels.l6qc(main_gui, cfg, ds5)
        if ds6.returncodes["value"] != 0:
            logger.info("Quitting L6: " + sitename)
        else:
            logger.info("Finished L6: " + sitename)
            out_filepath = pfp_io.get_outfilenamefromcf(cfg)
            nc_file = pfp_io.nc_open_write(out_filepath)
            pfp_io.nc_write_series(nc_file, ds6)
            logger.info("Finished saving L6 gap filled data")
        logger.info("")
    except Exception:
        msg = " Error running L6, see below for details ..."
        logger.error(msg)
        error_message = traceback.format_exc()
        logger.error(error_message)
    return
示例#5
0
def do_run_l4(main_gui, cfg):
    """
    Purpose:
     Top level routine for running the L4 gap filling.
    Usage:
     pfp_top_level.do_run_l4()
    Side effects:
     Creates an L4 netCDF file with gap filled meteorology.
    Author: PRI
    Date: Back in the day
    Mods:
     December 2017: rewrite for use with new GUI
    """
    try:
        logger.info("Starting L4 processing")
        in_filepath = pfp_io.get_infilenamefromcf(cfg)
        if not pfp_utils.file_exists(in_filepath):
            in_filename = os.path.split(in_filepath)
            logger.error("File " + in_filename[1] + " not found")
            return
        ds3 = pfp_io.nc_read_series(in_filepath)
        if ds3.returncodes["value"] != 0: return
        #ds3.globalattributes['controlfile_name'] = cfg['controlfile_name']
        sitename = ds3.globalattributes['site_name']
        if "Options" not in cfg:
            cfg["Options"] = {}
        cfg["Options"]["call_mode"] = "interactive"
        ds4 = pfp_levels.l4qc(main_gui, cfg, ds3)
        if ds4.returncodes["value"] != 0:
            logger.info("Quitting L4: " + sitename)
        else:
            logger.info("Finished L4: " + sitename)
            out_filepath = pfp_io.get_outfilenamefromcf(cfg)
            nc_file = pfp_io.nc_open_write(out_filepath)
            if nc_file is None: return
            pfp_io.nc_write_series(nc_file, ds4)  # save the L4 data
            logger.info("Finished saving L4 gap filled data")
        logger.info("")
    except Exception:
        msg = " Error running L4, see below for details ..."
        logger.error(msg)
        error_message = traceback.format_exc()
        logger.error(error_message)
    return
示例#6
0
def climatology(cf):
    nc_filename = pfp_io.get_infilenamefromcf(cf)
    if not pfp_utils.file_exists(nc_filename): return
    xl_filename = nc_filename.replace(".nc","_Climatology.xls")
    xlFile = xlwt.Workbook()
    ds = pfp_io.nc_read_series(nc_filename)
    # calculate Fa if it is not in the data structure
    got_Fa = True
    if "Fa" not in ds.series.keys():
        if "Fn" in ds.series.keys() and "Fg" in ds.series.keys():
            pfp_ts.CalculateAvailableEnergy(ds,Fa_out='Fa',Fn_in='Fn',Fg_in='Fg')
        else:
            got_Fa = False
            logger.warning(" Fn or Fg not in data struicture")
    # get the time step
    ts = int(ds.globalattributes['time_step'])
    # get the site name
    SiteName = ds.globalattributes['site_name']
    # get the datetime series
    dt = ds.series['DateTime']['Data']
    Hdh = numpy.array([(d.hour + d.minute/float(60)) for d in dt])
    Month = numpy.array([d.month for d in dt])
    # get the initial start and end dates
    StartDate = str(dt[0])
    EndDate = str(dt[-1])
    # find the start index of the first whole day (time=00:30)
    si = pfp_utils.GetDateIndex(dt,StartDate,ts=ts,default=0,match='startnextday')
    # find the end index of the last whole day (time=00:00)
    ei = pfp_utils.GetDateIndex(dt,EndDate,ts=ts,default=-1,match='endpreviousday')
    # get local views of the datetime series
    ldt = dt[si:ei+1]
    Hdh = Hdh[si:ei+1]
    Month = Month[si:ei+1]
    # get the number of time steps in a day and the number of days in the data
    ntsInDay = int(24.0*60.0/float(ts))
    nDays = int(len(ldt))/ntsInDay

    for ThisOne in cf['Variables'].keys():
        if "AltVarName" in cf['Variables'][ThisOne].keys(): ThisOne = cf['Variables'][ThisOne]["AltVarName"]
        if ThisOne in ds.series.keys():
            logger.info(" Doing climatology for "+ThisOne)
            data,f,a = pfp_utils.GetSeriesasMA(ds,ThisOne,si=si,ei=ei)
            if numpy.ma.count(data)==0:
                logger.warning(" No data for "+ThisOne+", skipping ...")
                continue
            fmt_str = get_formatstring(cf,ThisOne,fmt_def='')
            xlSheet = xlFile.add_sheet(ThisOne)
            Av_all = do_diurnalstats(Month,Hdh,data,xlSheet,format_string=fmt_str,ts=ts)
            # now do it for each day
            # we want to preserve any data that has been truncated by the use of the "startnextday"
            # and "endpreviousday" match options used above.  Here we revisit the start and end indices
            # and adjust these backwards and forwards respectively if data has been truncated.
            nDays_daily = nDays
            ei_daily = ei
            si_daily = si
            sdate = ldt[0]
            edate = ldt[-1]
            # is there data after the current end date?
            if dt[-1]>ldt[-1]:
                # if so, push the end index back by 1 day so it is included
                ei_daily = ei + ntsInDay
                nDays_daily = nDays_daily + 1
                edate = ldt[-1]+datetime.timedelta(days=1)
            # is there data before the current start date?
            if dt[0]<ldt[0]:
                # if so, push the start index back by 1 day so it is included
                si_daily = si - ntsInDay
                nDays_daily = nDays_daily + 1
                sdate = ldt[0]-datetime.timedelta(days=1)
            # get the data and use the "pad" option to add missing data if required to
            # complete the extra days
            data,f,a = pfp_utils.GetSeriesasMA(ds,ThisOne,si=si_daily,ei=ei_daily,mode="pad")
            data_daily = data.reshape(nDays_daily,ntsInDay)
            xlSheet = xlFile.add_sheet(ThisOne+'(day)')
            write_data_1columnpertimestep(xlSheet, data_daily, ts, startdate=sdate, format_string=fmt_str)
            data_daily_i = do_2dinterpolation(data_daily)
            xlSheet = xlFile.add_sheet(ThisOne+'i(day)')
            write_data_1columnpertimestep(xlSheet, data_daily_i, ts, startdate=sdate, format_string=fmt_str)
        else:
            logger.warning(" Requested variable "+ThisOne+" not in data structure")
            continue
    logger.info(" Saving Excel file "+os.path.split(xl_filename)[1])
    xlFile.save(xl_filename)
示例#7
0
def climatology(cf):
    nc_filename = pfp_io.get_infilenamefromcf(cf)
    if not pfp_utils.file_exists(nc_filename): return
    xl_filename = nc_filename.replace(".nc", "_Climatology.xls")
    xlFile = xlwt.Workbook()
    ds = pfp_io.nc_read_series(nc_filename)
    # calculate Fa if it is not in the data structure
    got_Fa = True
    if "Fa" not in ds.series.keys():
        if "Fn" in ds.series.keys() and "Fg" in ds.series.keys():
            pfp_ts.CalculateAvailableEnergy(ds,
                                            Fa_out='Fa',
                                            Fn_in='Fn',
                                            Fg_in='Fg')
        else:
            got_Fa = False
            logger.warning(" Fn or Fg not in data struicture")
    # get the time step
    ts = int(ds.globalattributes['time_step'])
    # get the site name
    SiteName = ds.globalattributes['site_name']
    # get the datetime series
    dt = ds.series['DateTime']['Data']
    Hdh = numpy.array([(d.hour + d.minute / float(60)) for d in dt])
    Month = numpy.array([d.month for d in dt])
    # get the initial start and end dates
    StartDate = str(dt[0])
    EndDate = str(dt[-1])
    # find the start index of the first whole day (time=00:30)
    si = pfp_utils.GetDateIndex(dt,
                                StartDate,
                                ts=ts,
                                default=0,
                                match='startnextday')
    # find the end index of the last whole day (time=00:00)
    ei = pfp_utils.GetDateIndex(dt,
                                EndDate,
                                ts=ts,
                                default=-1,
                                match='endpreviousday')
    # get local views of the datetime series
    ldt = dt[si:ei + 1]
    Hdh = Hdh[si:ei + 1]
    Month = Month[si:ei + 1]
    # get the number of time steps in a day and the number of days in the data
    ntsInDay = int(24.0 * 60.0 / float(ts))
    nDays = int(len(ldt)) / ntsInDay

    for ThisOne in cf['Variables'].keys():
        if "AltVarName" in cf['Variables'][ThisOne].keys():
            ThisOne = cf['Variables'][ThisOne]["AltVarName"]
        if ThisOne in ds.series.keys():
            logger.info(" Doing climatology for " + ThisOne)
            data, f, a = pfp_utils.GetSeriesasMA(ds, ThisOne, si=si, ei=ei)
            if numpy.ma.count(data) == 0:
                logger.warning(" No data for " + ThisOne + ", skipping ...")
                continue
            fmt_str = get_formatstring(cf, ThisOne, fmt_def='')
            xlSheet = xlFile.add_sheet(ThisOne)
            Av_all = do_diurnalstats(Month,
                                     Hdh,
                                     data,
                                     xlSheet,
                                     format_string=fmt_str,
                                     ts=ts)
            # now do it for each day
            # we want to preserve any data that has been truncated by the use of the "startnextday"
            # and "endpreviousday" match options used above.  Here we revisit the start and end indices
            # and adjust these backwards and forwards respectively if data has been truncated.
            nDays_daily = nDays
            ei_daily = ei
            si_daily = si
            sdate = ldt[0]
            edate = ldt[-1]
            # is there data after the current end date?
            if dt[-1] > ldt[-1]:
                # if so, push the end index back by 1 day so it is included
                ei_daily = ei + ntsInDay
                nDays_daily = nDays_daily + 1
                edate = ldt[-1] + datetime.timedelta(days=1)
            # is there data before the current start date?
            if dt[0] < ldt[0]:
                # if so, push the start index back by 1 day so it is included
                si_daily = si - ntsInDay
                nDays_daily = nDays_daily + 1
                sdate = ldt[0] - datetime.timedelta(days=1)
            # get the data and use the "pad" option to add missing data if required to
            # complete the extra days
            data, f, a = pfp_utils.GetSeriesasMA(ds,
                                                 ThisOne,
                                                 si=si_daily,
                                                 ei=ei_daily,
                                                 mode="pad")
            data_daily = data.reshape(nDays_daily, ntsInDay)
            xlSheet = xlFile.add_sheet(ThisOne + '(day)')
            write_data_1columnpertimestep(xlSheet,
                                          data_daily,
                                          ts,
                                          startdate=sdate,
                                          format_string=fmt_str)
            data_daily_i = do_2dinterpolation(data_daily)
            xlSheet = xlFile.add_sheet(ThisOne + 'i(day)')
            write_data_1columnpertimestep(xlSheet,
                                          data_daily_i,
                                          ts,
                                          startdate=sdate,
                                          format_string=fmt_str)
        elif ThisOne == "EF" and got_Fa:
            logger.info(" Doing evaporative fraction")
            EF = numpy.ma.zeros([48, 12]) + float(c.missing_value)
            Hdh, f, a = pfp_utils.GetSeriesasMA(ds, 'Hdh', si=si, ei=ei)
            Fa, f, a = pfp_utils.GetSeriesasMA(ds, 'Fa', si=si, ei=ei)
            Fe, f, a = pfp_utils.GetSeriesasMA(ds, 'Fe', si=si, ei=ei)
            for m in range(1, 13):
                mi = numpy.where(Month == m)[0]
                Fa_Num, Hr, Fa_Av, Sd, Mx, Mn = get_diurnalstats(
                    Hdh[mi], Fa[mi], ts)
                Fe_Num, Hr, Fe_Av, Sd, Mx, Mn = get_diurnalstats(
                    Hdh[mi], Fe[mi], ts)
                index = numpy.ma.where((Fa_Num > 4) & (Fe_Num > 4))
                EF[:, m - 1][index] = Fe_Av[index] / Fa_Av[index]
            # reject EF values greater than upper limit or less than lower limit
            upr, lwr = get_rangecheck_limit(cf, 'EF')
            EF = numpy.ma.filled(
                numpy.ma.masked_where((EF > upr) | (EF < lwr), EF),
                float(c.missing_value))
            # write the EF to the Excel file
            xlSheet = xlFile.add_sheet('EF')
            write_data_1columnpermonth(xlSheet, EF, ts, format_string='0.00')
            # do the 2D interpolation to fill missing EF values
            EFi = do_2dinterpolation(EF)
            xlSheet = xlFile.add_sheet('EFi')
            write_data_1columnpermonth(xlSheet, EFi, ts, format_string='0.00')
            # now do EF for each day
            Fa, f, a = pfp_utils.GetSeriesasMA(ds, 'Fa', si=si, ei=ei)
            Fe, f, a = pfp_utils.GetSeriesasMA(ds, 'Fe', si=si, ei=ei)
            EF = Fe / Fa
            EF = numpy.ma.filled(
                numpy.ma.masked_where((EF > upr) | (EF < lwr), EF),
                float(c.missing_value))
            EF_daily = EF.reshape(nDays, ntsInDay)
            xlSheet = xlFile.add_sheet('EF(day)')
            write_data_1columnpertimestep(xlSheet,
                                          EF_daily,
                                          ts,
                                          startdate=ldt[0],
                                          format_string='0.00')
            EFi = do_2dinterpolation(EF_daily)
            xlSheet = xlFile.add_sheet('EFi(day)')
            write_data_1columnpertimestep(xlSheet,
                                          EFi,
                                          ts,
                                          startdate=ldt[0],
                                          format_string='0.00')
        elif ThisOne == "BR":
            logger.info(" Doing Bowen ratio")
            BR = numpy.ma.zeros([48, 12]) + float(c.missing_value)
            Fe, f, a = pfp_utils.GetSeriesasMA(ds, 'Fe', si=si, ei=ei)
            Fh, f, a = pfp_utils.GetSeriesasMA(ds, 'Fh', si=si, ei=ei)
            for m in range(1, 13):
                mi = numpy.where(Month == m)[0]
                Fh_Num, Hr, Fh_Av, Sd, Mx, Mn = get_diurnalstats(
                    Hdh[mi], Fh[mi], ts)
                Fe_Num, Hr, Fe_Av, Sd, Mx, Mn = get_diurnalstats(
                    Hdh[mi], Fe[mi], ts)
                index = numpy.ma.where((Fh_Num > 4) & (Fe_Num > 4))
                BR[:, m - 1][index] = Fh_Av[index] / Fe_Av[index]
            # reject BR values greater than upper limit or less than lower limit
            upr, lwr = get_rangecheck_limit(cf, 'BR')
            BR = numpy.ma.filled(
                numpy.ma.masked_where((BR > upr) | (BR < lwr), BR),
                float(c.missing_value))
            # write the BR to the Excel file
            xlSheet = xlFile.add_sheet('BR')
            write_data_1columnpermonth(xlSheet, BR, ts, format_string='0.00')
            # do the 2D interpolation to fill missing EF values
            BRi = do_2dinterpolation(BR)
            xlSheet = xlFile.add_sheet('BRi')
            write_data_1columnpermonth(xlSheet, BRi, ts, format_string='0.00')
            # now do BR for each day ...
            Fe, f, a = pfp_utils.GetSeriesasMA(ds, 'Fe', si=si, ei=ei)
            Fh, f, a = pfp_utils.GetSeriesasMA(ds, 'Fh', si=si, ei=ei)
            BR = Fh / Fe
            BR = numpy.ma.filled(
                numpy.ma.masked_where((BR > upr) | (BR < lwr), BR),
                float(c.missing_value))
            BR_daily = BR.reshape(nDays, ntsInDay)
            xlSheet = xlFile.add_sheet('BR(day)')
            write_data_1columnpertimestep(xlSheet,
                                          BR_daily,
                                          ts,
                                          startdate=ldt[0],
                                          format_string='0.00')
            BRi = do_2dinterpolation(BR_daily)
            xlSheet = xlFile.add_sheet('BRi(day)')
            write_data_1columnpertimestep(xlSheet,
                                          BRi,
                                          ts,
                                          startdate=ldt[0],
                                          format_string='0.00')
        elif ThisOne == "WUE":
            logger.info(" Doing ecosystem WUE")
            WUE = numpy.ma.zeros([48, 12]) + float(c.missing_value)
            Fe, f, a = pfp_utils.GetSeriesasMA(ds, 'Fe', si=si, ei=ei)
            Fc, f, a = pfp_utils.GetSeriesasMA(ds, 'Fc', si=si, ei=ei)
            for m in range(1, 13):
                mi = numpy.where(Month == m)[0]
                Fc_Num, Hr, Fc_Av, Sd, Mx, Mn = get_diurnalstats(
                    Hdh[mi], Fc[mi], ts)
                Fe_Num, Hr, Fe_Av, Sd, Mx, Mn = get_diurnalstats(
                    Hdh[mi], Fe[mi], ts)
                index = numpy.ma.where((Fc_Num > 4) & (Fe_Num > 4))
                WUE[:, m - 1][index] = Fc_Av[index] / Fe_Av[index]
            # reject WUE values greater than upper limit or less than lower limit
            upr, lwr = get_rangecheck_limit(cf, 'WUE')
            WUE = numpy.ma.filled(
                numpy.ma.masked_where((WUE > upr) | (WUE < lwr), WUE),
                float(c.missing_value))
            # write the WUE to the Excel file
            xlSheet = xlFile.add_sheet('WUE')
            write_data_1columnpermonth(xlSheet,
                                       WUE,
                                       ts,
                                       format_string='0.00000')
            # do the 2D interpolation to fill missing EF values
            WUEi = do_2dinterpolation(WUE)
            xlSheet = xlFile.add_sheet('WUEi')
            write_data_1columnpermonth(xlSheet,
                                       WUEi,
                                       ts,
                                       format_string='0.00000')
            # now do WUE for each day ...
            Fe, f, a = pfp_utils.GetSeriesasMA(ds, 'Fe', si=si, ei=ei)
            Fc, f, a = pfp_utils.GetSeriesasMA(ds, 'Fc', si=si, ei=ei)
            WUE = Fc / Fe
            WUE = numpy.ma.filled(
                numpy.ma.masked_where((WUE > upr) | (WUE < lwr), WUE),
                float(c.missing_value))
            WUE_daily = WUE.reshape(nDays, ntsInDay)
            xlSheet = xlFile.add_sheet('WUE(day)')
            write_data_1columnpertimestep(xlSheet,
                                          WUE_daily,
                                          ts,
                                          startdate=ldt[0],
                                          format_string='0.00000')
            WUEi = do_2dinterpolation(WUE_daily)
            xlSheet = xlFile.add_sheet('WUEi(day)')
            write_data_1columnpertimestep(xlSheet,
                                          WUEi,
                                          ts,
                                          startdate=ldt[0],
                                          format_string='0.00000')
        else:
            logger.warning(" Requested variable " + ThisOne +
                           " not in data structure")
            continue
    logger.info(" Saving Excel file " + os.path.split(xl_filename)[1])
    xlFile.save(xl_filename)