def test_load_a3c(self): from pfrl.policies import SoftmaxCategoricalHead obs_size = 4 n_actions = 4 a3c_model = nn.Sequential( nn.Conv2d(obs_size, 16, 8, stride=4), nn.ReLU(), nn.Conv2d(16, 32, 4, stride=2), nn.ReLU(), nn.Flatten(), nn.Linear(2592, 256), nn.ReLU(), pfrl.nn.Branched( nn.Sequential( nn.Linear(256, n_actions), SoftmaxCategoricalHead(), ), nn.Linear(256, 1), ), ) from pfrl.optimizers import SharedRMSpropEpsInsideSqrt opt = SharedRMSpropEpsInsideSqrt(a3c_model.parameters(), lr=7e-4, eps=1e-1, alpha=0.99) agent = agents.A3C(a3c_model, opt, t_max=5, gamma=0.99, beta=1e-2, phi=lambda x: x) downloaded_model, exists = download_model( "A3C", "BreakoutNoFrameskip-v4", model_type=self.pretrained_type) agent.load(downloaded_model) if os.environ.get("PFRL_ASSERT_DOWNLOADED_MODEL_IS_CACHED"): assert exists
def _test_abc( self, t_max, recurrent, discrete=True, episodic=True, steps=100000, require_success=True, ): nproc = 8 def make_env(process_idx, test): size = 2 return ABC( size=size, discrete=discrete, episodic=episodic or test, partially_observable=self.recurrent, deterministic=test, ) env = make_env(0, False) model = self.make_model(env) from pfrl.optimizers import SharedRMSpropEpsInsideSqrt opt = SharedRMSpropEpsInsideSqrt(model.parameters()) gamma = 0.8 beta = 1e-2 agent = a3c.A3C( model, opt, t_max=t_max, gamma=gamma, beta=beta, act_deterministically=True, max_grad_norm=1.0, recurrent=recurrent, ) max_episode_len = None if episodic else 2 with warnings.catch_warnings(record=True) as warns: train_agent_async( outdir=self.outdir, processes=nproc, make_env=make_env, agent=agent, steps=steps, max_episode_len=max_episode_len, eval_interval=500, eval_n_steps=None, eval_n_episodes=5, successful_score=1, ) assert len(warns) == 0, warns[0] # The agent returned by train_agent_async is not guaranteed to be # successful because parameters could be modified by other processes # after success. Thus here the successful model is loaded explicitly. if require_success: agent.load(os.path.join(self.outdir, "successful")) # Test env = make_env(0, True) n_test_runs = 5 eval_returns = run_evaluation_episodes( env, agent, n_steps=None, n_episodes=n_test_runs, max_episode_len=max_episode_len, ) successful_return = 1 if require_success: n_succeeded = np.sum(np.asarray(eval_returns) >= successful_return) assert n_succeeded == n_test_runs
def main(): parser = argparse.ArgumentParser() parser.add_argument("--processes", type=int, default=16) parser.add_argument("--env", type=str, default="BreakoutNoFrameskip-v4") parser.add_argument("--seed", type=int, default=0, help="Random seed [0, 2 ** 31)") parser.add_argument( "--outdir", type=str, default="results", help=("Directory path to save output files." " If it does not exist, it will be created."), ) parser.add_argument("--t-max", type=int, default=5) parser.add_argument("--beta", type=float, default=1e-2) parser.add_argument("--profile", action="store_true") parser.add_argument("--steps", type=int, default=8 * 10**7) parser.add_argument( "--max-frames", type=int, default=30 * 60 * 60, # 30 minutes with 60 fps help="Maximum number of frames for each episode.", ) parser.add_argument("--lr", type=float, default=7e-4) parser.add_argument("--eval-interval", type=int, default=250000) parser.add_argument("--eval-n-steps", type=int, default=125000) parser.add_argument("--demo", action="store_true", default=False) parser.add_argument("--load-pretrained", action="store_true", default=False) parser.add_argument("--load", type=str, default="") parser.add_argument( "--log-level", type=int, default=20, help="Logging level. 10:DEBUG, 20:INFO etc.", ) parser.add_argument( "--render", action="store_true", default=False, help="Render env states in a GUI window.", ) parser.add_argument( "--monitor", action="store_true", default=False, help= ("Monitor env. Videos and additional information are saved as output files." ), ) args = parser.parse_args() import logging logging.basicConfig(level=args.log_level) # Set a random seed used in PFRL. # If you use more than one processes, the results will be no longer # deterministic even with the same random seed. utils.set_random_seed(args.seed) # Set different random seeds for different subprocesses. # If seed=0 and processes=4, subprocess seeds are [0, 1, 2, 3]. # If seed=1 and processes=4, subprocess seeds are [4, 5, 6, 7]. process_seeds = np.arange(args.processes) + args.seed * args.processes assert process_seeds.max() < 2**31 args.outdir = experiments.prepare_output_dir(args, args.outdir) print("Output files are saved in {}".format(args.outdir)) def make_env(process_idx, test): # Use different random seeds for train and test envs process_seed = process_seeds[process_idx] env_seed = 2**31 - 1 - process_seed if test else process_seed env = atari_wrappers.wrap_deepmind( atari_wrappers.make_atari(args.env, max_frames=args.max_frames), episode_life=not test, clip_rewards=not test, ) env.seed(int(env_seed)) if args.monitor: env = pfrl.wrappers.Monitor( env, args.outdir, mode="evaluation" if test else "training") if args.render: env = pfrl.wrappers.Render(env) return env sample_env = make_env(0, False) obs_size = sample_env.observation_space.low.shape[0] n_actions = sample_env.action_space.n model = nn.Sequential( nn.Conv2d(obs_size, 16, 8, stride=4), nn.ReLU(), nn.Conv2d(16, 32, 4, stride=2), nn.ReLU(), nn.Flatten(), nn.Linear(2592, 256), nn.ReLU(), pfrl.nn.Branched( nn.Sequential( nn.Linear(256, n_actions), SoftmaxCategoricalHead(), ), nn.Linear(256, 1), ), ) # SharedRMSprop is same as torch.optim.RMSprop except that it initializes # its state in __init__, allowing it to be moved to shared memory. opt = SharedRMSpropEpsInsideSqrt(model.parameters(), lr=7e-4, eps=1e-1, alpha=0.99) assert opt.state_dict()["state"], ( "To share optimizer state across processes, the state must be" " initialized before training.") def phi(x): # Feature extractor return np.asarray(x, dtype=np.float32) / 255 agent = a3c.A3C( model, opt, t_max=args.t_max, gamma=0.99, beta=args.beta, phi=phi, max_grad_norm=40.0, ) if args.load_pretrained: raise Exception("Pretrained models are currently unsupported.") if args.load: agent.load(args.load) if args.demo: env = make_env(0, True) eval_stats = experiments.eval_performance(env=env, agent=agent, n_steps=args.eval_n_steps, n_episodes=None) print("n_steps: {} mean: {} median: {} stdev: {}".format( args.eval_n_steps, eval_stats["mean"], eval_stats["median"], eval_stats["stdev"], )) else: # Linearly decay the learning rate to zero def lr_setter(env, agent, value): for pg in agent.optimizer.param_groups: assert "lr" in pg pg["lr"] = value lr_decay_hook = experiments.LinearInterpolationHook( args.steps, args.lr, 0, lr_setter) experiments.train_agent_async( agent=agent, outdir=args.outdir, processes=args.processes, make_env=make_env, profile=args.profile, steps=args.steps, eval_n_steps=args.eval_n_steps, eval_n_episodes=None, eval_interval=args.eval_interval, global_step_hooks=[lr_decay_hook], save_best_so_far_agent=True, )